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Summary

In a world of ever-increasing computational power and connectivity, smartphones have become
completely integral and relied upon in our daily lives. Sensor hardware technology has been at the
forefront of facilitating the rising popularity through increased functionality. However, as the use and
sensors such as gyroscopes, accelerometers and ambient light sensors become more prevalent so too
do the security and privacy risks associated with them. This dissertation explores the existing security
vulnerabilities and mitigation strategies for smartphone sensors, then this work will focus on the
concerns surrounding ambient light sensors and their possibility for location inference through
location leakage.

In order to explore these privacy and security concerns of ambient light sensors, research was carried
out. Firstly, a comprehensive review of relevant literature surrounding smartphone sensors such as the
ambient light sensors and the android stack was carried out. This was done to establish a foundational
understanding of the overall risks and possible mitigation strategies that the Android smartphone eco-
system faces. Then a Java-based Android application was created to capture the real-world
environmental lux data of multiple locations from an android’s ambient light sensor, including indoor
and outdoor environments. Then the collected data was analysed, through various techniques such a
key feature extraction, visual analysis, and machine learning, with the guise of inferring
environmental information to find the digital fingerprint,

The analysis performed by this dissertation revealed that while it is possible to use ambient light data
to infer a user’s location, there are limitations to the results gathered by this project. In that, the
sample size taken was too short to allow for environmental distinctiveness to be observed. However,
the disparity between outdoor and indoor environments was clearly observed and using classification
machine learning, new data was correctly assigned to outside environments. This dissertation also
found that the ambient light sensor could easily be exploited by malicious actors on account of
android permissionless sensors.

Furthermore, the research performed highlighted issues in existing mitigation strategies and
highlighted the need for improved security measures surrounding individual mobile sensors, such as
ambient light sensors. The findings of the dissertation show that while there are possible significant
PII violations, most notably in determining if a user is in an indoor or outdoor environment, more
comprehensive data collection methods and analysis techniques are needed to fully understand the
risks and be able to develop mitigations for these risks. Ultimately, the security protocols surrounding
ambient light sensors should be reevaluated in favour or stricter permissions to protect user’s security
and privacy.



Chapter 1: Introduction

1.1 Research Question

This project’s research question is” How can smartphone ambient light sensors [1] (ALS) be exploited
to infer environmental information and what measures can be taken to mitigate the potential privacy
and security risks”

1.1.1 Research Objectives/Aims

The research objectives and aims of this document are as follows:

1. Identify the existing research present, related to the security and privacy concerns of mobile
ambient light sensors and its implications to personal security, PII and information inference,
such as an environment’s digital fingerprint.

2. Design and develop a Java Android application that can be used to gain lux data from a
smartphone’s ambient light sensor

3. Present and format captured ambient light sensor data for analysis from different common
locations, such as household rooms and outside environments

4. Investigate the risk around how a malicious actor would be able to exploit the vulnerabilities
of ambient light sensors to gain access to unauthorised personal data

5. To assess and evaluate how effective security measures associated with mobile ambient light
sensors are

6. To propose possible solutions and risk mitigations to address any ineffective ambient light
sensor security measures

1.2 Project Motivation

Sensors in general are incredibly useful in a multitude of domestic and industrial fields [see Section
2.5.2.1], this fact is especially true in the aspect of smartphones. By definition ‘smart’ phones are
smart from their ability to interact and communicate with other external devices in many different
ways. Each avenue of interaction is facilitated by some form of sensor or another. As outlined in the
literature review [See Section 2.6], sensors have been extensively researched. Some types of sensors
have more attention than others. E.g. there is extensive literature on smartphone accelerometers and
their various phenomenon.

Due to the innate distinctive characteristics of sensors, they are able to be used in cooperation in
applications such as fusing Gyroscope and Accelerometer sensors to create accurate tracking systems.
[See Section 2.6] This flexibility means that they can be used to create useful systems or could be
used by malicious actors.



1.2.1 Project Importance

This topic is important since there is a lack of research surrounding the effects of ALS on
smartphones. ALS have the potential to be exploited and leak sensitive information about a user’s
movement, which in turn leads to PII violations. This project focuses on this issue to help ensure the
security of ALS and prevent malicious actors from inferring sensitive information.

1.3 Project Approach

The approach that this project will take consists of several elements; a literature review covering
detailed focused research and background information. The Android Java application captures the
ambient light data, and finally, the data analysis process uses Jupyter Notebooks to perform signal
processing and data analysis.

This dissertation will contain the necessary relevant background information surrounding computing,
sensor technology and how security interacts with it all as well as a literature review on sensors, with
an emphasis on ALS.

A major consideration taken is the validity of sources, by examining the credibility, relevance and
reputation of academic sources. While different literature sources have been used, sources with the
highest of these attributes have been prioritised. For example, sources from reputable, peer-reviewed
papers have been used instead of sources from internet blogs. To search for and access these sources,
research-orientated search engines or databases have been used, such as Google Scholar [2],
ResearchGate [3], Scopus [4] and Royal Holloway LibrarySearch [5]

As well as presenting a literature review on ALS technologies. This paper will also present a
comprehensive data analysis captured from an Android application. Through signal processing and
machine learning, results are presented.



Chapter 2: Background and Related Work
2.1 Computing

The history of computing is a rich tapestry, characterised by continuous advancements and
innovations that have revolutionised the way we interact with technology and subsequently, the
world.

Modern computing is so important today because almost every aspect of everyday life is driven or
makes use of computing to some degree [6]. One of the main reasons it permeates throughout our

world comes from its inherent communication and connectivity capabilities [7]. From partaking in
social media [8] to facilitating academic research, computing enables previously impossible [9] or
impractical work to be carried out, such as finding the Mersenne Prime [10].

2.1.1 Computing Paradigms

As computing technologies progress, so too do the forms in which computing can take place [11].
These computing forms can be characterised by the following paradigms, Discrete fixed locations,
Mobile, and Cloud computing.

2.1.1.1 Discrete fixed locations

This is the oldest form of computing [12], which simply refers to computing devices that are set in
one physical location. At a fundamental level, all computing devices can be defined by this
characteristic. Mainframes|13], Data centres[14], University computer labs, and Office workstations
are what we consider computing in discrete fixed locations. Discrete fixed locations share the
characteristics of being stationary hardware with localised processing capabilities and are self-
contained in their own environment. In the case of a home desktop computer, this refers to being
restrained to the physical device itself and for larger systems such as data centres, being self-contained
in its physical location like a building. Due to the physical location, another characteristic is that of
the encompassing environment being controlled. This means that these environments can be
computationally optimised, have secure environment controls as outlined by ISO 27001 Physical and
Environmental Security [15], and also have regulated internal systems such as reliable power
supplies.

2.1.1.2 Mobile

The mobile technology paradigm refers to computing on portable physical devices. This became
possible due to the miniaturisation of processors [16]. The smartphone has its origins in the
combination of telephones and computing technology. In the 1990s and early 2000s [17] personal
digital assistants (PDA) grew in popularity. Most PDAs consisted of a small physical keyboard and
also had early touchscreen capabilities, however unlike contemporary mobile phones, they did not
contain cellular technology [18]. As the name suggests the device was mainly for information storage
and retrieval, as well as utilities through calendars and address books. As technology improved PDAs
and mobile phones were merged, creating a new type of device, the Smartphone. The first being “The
IBM Simon” released in 1994 [19]. As well as smartphones, which this project will focus on, mobile
computing also encompasses any computational capable device that is portable, such as tablets,
laptops and wearable devices. The main characteristics of this paradigm can be defined as being
versatile, in that these devices can often be multi-purpose. As a result of their mobility, they are also
usually battery-powered.



2.1.1.3 Cloud

Cloud services, while not strictly a unique 3rd paradigm of computing, make use of the
interconnectivity of mobile and discrete devices to allow for the use of another entity’s computing
resources, such as data processing, data storage, and management[20]. The delivery of these services
can be defined as; Software-as-a-Service (SaaS)[21], Platform-as-a-Service (PaaS)[22], and
Infrastructure-as-a-Service (IaaS)[23].

2.1.2 Computing Vulnerabilities

As computing systems are ubiquitous in almost every facet of life, naturally they contain private and
confidential information depending on the particular nature of that device’s use.

Whether they are fixed, mobile or cloud-based computing solutions these systems will have
vulnerabilities stemming from many different reasons. The most common reasons include:

Complexity of systems: The complexity of systems can lead to an increased risk of the
introduction of vulnerabilities in systems [24]. This is due to the fact that as complexity
increases so too does the difficulty for developers to understand, maintain and develop code
with a security-conscious approach without making mistakes

Software design bugs and flaws: while software design flaws, bugs and errors in general do
not inherently lead to security vulnerabilities, they often allow malicious actors to exploit for
unintended consequences [25]. Although bugs and vulnerabilities are conceptually different,
bugs relate to incorrect functionality, meaning not all bugs and flaws are security exploits but
all security exploits are bugs and flaws

Human Error: While human error includes vulnerabilities accidentally introduced in the
development system of a system, human error also applies to a system’s users. For example,
more than 300 students in Melbourne had their health records accidentally published online
by an administrator violating PII [26].

Interconnectivity: The extensive connectivity of computing devices, especially across
networks can lead to multiple attack vectors. If a device on a network becomes compromised,
other devices could be at risk from an attack traversing a network. A computer worm [27] is a
type of malware designed to self-replicate and infect devices on a network as an example.

Legacy systems: By definition [28] a legacy system is a system that replies on outdated
computing software or hardware. The security techniques and practises used when they were
first implemented might have been performed adequately, however, as regular updating has
stopped many vulnerabilities could remain exposed to be exploited by malicious attackers.

Sophisticated attacks: complex attacks such as Advanced Persistent Threats, outlined in
section 2.2.1.3 are examples of a type of complex attack that combines different techniques
and methodologies to circumnavigate around a systems security defences and maintain
undetected for long periods of time. For example, Stuxnet was used to attack Iranian state
nuclear enrichment facilities [29].

Insider Threats: Individuals within an organisation have the possibly to pose security
risks[30], mainly from two possibilities, the individual themselves are a malicious actor or
they accidentally expose the organisation to exploits. For example, an individual within a
target organisation could unwittingly engage with a Phishing email [31] and devolve sensitive
information.



o Insufficient security practices: Insufficient or poor implementation of security practises can
lead to a system becoming exposed to vulnerabilities. For example, incorrect implementation
of encryption standards and incorrect instruction on how to deal with potential cyber threats
on an organisational level can leave an organisation vulnerable[32].

2.1.3 CIA Triad

In the context of computing a vulnerability can be defined as a weakness or threat in a computer
system which could violate the Confidentiality, Integrity, and Availability of data, the so-called CIA
triad [33] — Which is when a violation of a system’s internal controls, security procedures, or its
design and implementation occurs [34].

There are many different types of vulnerabilities and reasons each having complex root causes [35].
Hence, the way to respond to a particular vulnerability can depend on a variety of things. However, as
the largest percentage of vulnerabilities are exploited or exacerbated by human error [36], a lot of the
most effective measures are oriented around education and the implementation of data protection
policies. The use and implementation of various policies can also be crucial. For example, adhering to
correct comprehensive security policies to prevent the violation of CIA is crucial [36].

Other methods are also used, such as ensuring systems are regularly updated and patched to the latest
secure versions. This is because as vulnerabilities are discovered they can be patched through updates
disseminated by the vendor [37].



2.2 Cyber Security

The term cyber security [38] refers to the techniques and practises organisations and individuals use to
reduce the risk of a vulnerability being exploited that would lead to a violation of the CIA Triad. The
things that attempt to cause these violations are known as cybersecurity attacks.

2.2.1 Types of Cyber Attacks

The taxonomy of cyber-attacks can be split into two main categories [39], Active and Passive attacks.
These can both be further classified into on-path and off-path attacks.

2.2.1.1 Active attacks

Involves the direct manipulation of data in a network by a hostile actor [40]. In most circumstances,
this type of attack requires a direct line of connection between the target and the attacker.

Table 1 shows a selection of active attacks

Table 4: a selection of active attacks

Type of Attack

Description

Denial of Service
(DoS)

DoS [41] is when a malicious entity sends a target system multiple requests, that
the target system deems to be legitimate. These “legitimate” requests hold up a
large portion of the system’s processing power. The target system processes these
requests instead of actual legitimate requests, thus denying access to legitimate
users.

Distributed Denial
of Service (DDoS)

DDoS [42] is the same method as DoS, except instead of the malicious entity
using one system, they use a multitude of compromised systems to perform the
same attack.

SQL Injection SQL injection [43] is when malicious attackers exploit a database security

Attack vulnerability that allows users through inputting or injecting a SQL query as input
data to perform unauthorised manipulation of the internal system.

Replay attack Reply attacks [44] involve a malicious attacker capturing a communication or data
and withholding it until the attacker’s desired time to resend it to gain access to or
achieve an unauthorised action of a target system

Masquerading Masquerading [45] is when a malicious attacker directly impersonates another
entity in order to perform actions exclusive to the impersonated entity.

Man-in-the- The MitM [46] attack involves an attacker intercepting communications, and

Middle (MitM) placing themselves between two separate entities. Allowing interception, reading,

and altering of the two entities' communications without their knowledge.




2.2.1.2 Passive attacks
Passive attacks involve the indirect disruption or manipulation of data or communication systems.

Passive attacks involve indirect interaction between an attacker and the target, mainly through
information leakage. Table 2 shows the different cyber-attacks that fall into passive attacks

Table 5: passive attacks

Type of Attack Description

Eavesdropping Eavesdropping [47] is the act of an attacker intercepting internal or external data
(sniffing) communications without the target’s knowledge in order to gather sensitive
information.

Traffic analysis Traffic analysis [48] is when sensitive data is analysed for behaviours and patterns
that can lead to extra inferred information. This attack can also be performed on
encrypted data to achieve similar pattern analysis.

Side-channel Side-channel attacks [49] involve exploiting other data streams which might not be

attacks obvious. For example, device power usage could be used to infer internal
processes.

Release of Release of message [50] refers to the act of releasing or leaking sensitive

message information against the target's wishes and violating confidentiality. As an example,

an attacker could intercept and disclose emails without actively manipulating the
captured information.

2.2.1.3 On-path and Off-path attacks

On-path and Off-path attacks define certain modes of operation of the cyber-attacks that violate the
CIA triad. These modes of operation are not mutually exclusive, in that multiple combinations of
attacks could be used each under a different paradigm of attack.

On-path attackers are defined [51] as attacks where the malicious actor places themselves directly on
the information channel ‘path’ by usually intercepting communications between the server and the
client and using the intercepted information for two-way impersonation. The MiTM attack is the most
well-known on-path attack.

Off-path attacks are when an attacker is not situated on the information ‘path’ between the server and
the client [52]. If an attacker does not have access to a network the malicious actor can still ‘inject’
packets into a network in hopes of causing adverse effects to the system [53]. As they do not have
access various techniques need to be employed, such as trying to guess the internal generation method
through commonly known standards. An example would be a ‘TCP Sequence Number Inference
Attack’ [54].

In real-world cyber-attack scenarios, depending on the target environment and situation, attackers
make use of multiple different aspects of active and passive attack paradigms[55]. What type of



methods and tools attackers use depends on the target scope, for example, a multinational business
enterprise would require an attack that is significantly more advanced and sophisticated compared to
compromising a household network.

These sophisticated attacks are often called Advanced Persistent Threats (APTs)[56]. APTs are
characterised by their prolonged, stealthy, multi-stage approach to compromise systems. Often their
goal is to maintain persistent access to the target system to perform malicious activities. A famous
example is that of ‘Operation Aurora’ in which the Chinese cyber espionage group ‘Elderwood’
performed a series of cyber-attacks infiltrating many American Fortune 100 companies, such as
Google [57], Yahoo, and Morgan Stanley. The reason for the attack was widely believed to be to
capture information on Chinese dissidents [58].

2.2.2 Cyber Attack Mitigation Strategies

The effective mitigation of cyber-attacks in general requires understanding the root methodologies of
a given cyber-attack. Employing strategic frameworks are a good way to counter the threat from
malicious actors against an organisation. With these frameworks in place, an organisation can
effectively mitigate the risk[59].

2.2.2.1 Cyber Kill Chain

There are many ways in which a cyber-attack can be mitigated or prevented and while they follow a
general layout [60] Figure 1 shows the industry standard Lockheed Martin’s Cyber Kill Chain (CKC)
model [61], a phased-based methodology outlining and interpreting the typical structure and sequence
of events of a cyber-attack. This methodology was created to allow organisations to better equip
themselves to deal with cyber threats. If an organisation can understand each step, it can focus its
defence on organising mitigation or defence strategies for each phase of the model.

Harvesting email addresses,
conference information, etc

Coupling exploit with backdoor
into deliverable payload

Delivering weaponized bundle to the
victim via email, web, USB, etc

Exploiting a vulnerability to execute
code on victim's system

COMMAND & CONTROL (C2)

Command channel for remote
manipulation of victim

ACTIONS ON DBJECTIVES

With ‘Hands on Keyboard' access,
intruders accomplish their original goals

Figure 1: Lockheed Martin CKC model - [61]



As outlined in Figure 1, the Lockheed Martin CKC Model uses seven stages for a stereotypical cyber-
attack. These stages are outlined below:

1. Reconnaissance: in this step, an attacker attempts to collect as much information as possible
surrounding a target in order to understand the scope and the requirements needed for the
adversary to penetrate the target. Many active or passive approaches can be taken, for
example, social media information can be taken passively to understand the hierarchy of the
organisation. Active target enumeration tools can be performed to scan networks for open
ports or vulnerable services such as NMAP [62].

2. Weaponisation: in this step, the malicious actor designs their attack approach using the
information from the reconnaissance stage. Knowing the layout and what services and ports
are vulnerable the attacker can choose their approach and which element of the target
organisation to exploit. For example, social engineering phishing attacks [31] can be used to
exploit the vulnerable human element. Malicious actors could also network attacks to exploit
vulnerable open ports or services.

3. Delivery: After the attack has been weaponised the malicious actors have to deliver the
payload in some way. Depending on the target organisation, different ways exist, such as
malicious downloads, physically dropped USBs or in which an employee or target
unknowingly plugs into the target system.

4. Exploitation: Once the attacker has successfully delivered their payload to their intended
target then the actual mechanism is engaged to exploit the chosen vulnerability to achieve the
malicious actor’s goals.

5. Installation: In this stage, the attacker has gained access to the system and exploited the
vulnerability. Not all types of attacks follow this step and propagate through a system.
However, if applicable the malicious actor in this step would gain access to other devices on
the network through remote access trojans (RATS) [63]. Once a RAT or similar malware is
present the malicious actors can implement backdoor access for maintaining a connection to
the target

6. Command and Control (C2): After an attacker has established a presence on a target's
system then using the chosen exploitation and installation methods the malicious actor can
further command and control the system to achieve the malicious actor’s aims.

7. Actions on Objectives: This stage is the actual enactment of the malicious actor’s aims and
goals through the C2 establishment. For example, a RAT could be installed on a smartphone
and data exfiltrated from the unaware user.

Due to the ever-changing landscape, no two cyber-attacks are truly the same. Because of this, having
an all-encompassing cyber threat methodology is nearly impossible. However, making use of multiple
frameworks helps counter this and aids in creating a more complete image. Whilst the CKC model is
the most common paradigm, the MITRE ATT&CK Framework [64] and NIST Cybersecurity
Framework [65] also exist to compensate for the CKC’s weaknesses. The CKC’s pros and cons [66]
are listed below in sections 2.2.2.1.1 and 2.2.2.1.2:



2.2.2.1.1

2.2.2.1.2

Pros

The CKC model emphasizes preventative measures by outlining the early steps of a cyber-
attack through the inclusion of the reconnaissance stage. Meaning that organisations are able
to reduce the risk of cyber-attacks by lowering their exposure to outside threats

The CKC model follows a clearly structured approach as outlined in Section 2.2.2.1, allowing
for organisations to assess each step individually and apply the corresponding mitigation
strategies.

As one of the first comprehensive security mitigation frameworks, the CKC model is widely
used by many organisations.

Cons

The CKCs model is based on an older military kill chain [67] which has seen no adaption for
a long period of time, which means that some of the emergence of cyber threats might not be
taken into account.

While the model outlines each phase of an attack it does not directly suggest a solution to
counteract against each phase.

The CKC model does not take into account other types of attack well, while external threats
are modelled, internal attacks are not as well acknowledged.

The CKC model does not take into account iterative attacks, or attacks combining multiple
adaptive malicious tactics, techniques and procedures.

While the CKC model outlines an attack from beginning to end, focused on their actions
executions and goals it follows a rigid structure which makes the approach less successful for
more fluid attacks.



2.2.2.2 MITRE ATT&CK Framework

The Adversarial Tactics, Techniques and Common Knowledge (ATT&CK) framework produced and
maintained by MITRE provides an extensive and constantly updated description of actions that
attacks take. The high-level goals, which are the tactics and the specifics covered in the technique
category. This framework provides analysts with specifics when dealing with known adversaries. This
can be incorporated into the CKC model to gain further insights into each step on the kill chain, as
well as potential gaps in an organisation's defence.

Figure 2 shows the ATT&CK Frame work that addresses some of the weaknesses of the CKC model.
By providing a knowledge base of known adversarial tactics and techniques based on real-world
observations this improves on the CKC, which uses an older military kill chain. The ATT&CK
framework also improves on the lack of direct solutions in the CKC model, through providing
detailed techniques for each phase.

Figure 2 also shows active mitigation strategies that organisations can employ to defend against a
cyber-attack, it is also of note that the frame work has more phases to account for the differing

potential variability in cyber-attacks. The framework’s pros and cons are listed below in sections
2.2.2.2.1and 2.2.2.2.2:

Top Artifacts Used in Each Stage of MITRE Attack Chain
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Figure 2: MITRE ATT&CK Framework — [68]

2.2.2.2.1 Pros

e The ATT&CK Framework offers cyber security professionals specific details as to how
malicious actors operate. In turn, allowing for defence strategies to be implemented.

e Asthe framework is centred around real-world data, the tactics and techniques outlined are
up-to-date and relevant. This allows for informed security decision-making on an
organisational level.

e Many Security Information and Event Management Tools (SIEM) such as Securonix [69]
integrate the framework allowing organisations to automatically apply the framework to their
systems.



2.2.2.2.2

Cons

The level of detail within the framework can be overwhelming with the amount of
information displayed. This is especially true for organisations with limited cyber security
experience.

Due to the complexity and level of detail, the number of resources an organisation requires to
enact the framework can be intensive. Often requiring specialised personal to apply the tactics
and techniques.

While the framework is comprehensive and based on real-world data, this framework is
unable to make predictions and react to new emerging threats such as 0-day exploits [70].



2.2.2.3 NIST Cyber Security Framework

The NIST Cyber Security Framework (CSF) is designed to help businesses and organisations manage,
understand and reduce their cybersecurity risks. It was designed by the National Institute of Standards
and Technology (NIST) [71] Unlike the aforementioned frameworks, the CSF outlines the best
practises that an organisation should take should it choose to do so in general.

Figure 3 shows the NIST CSF framework, which consists of Identify, Protect, Detect, Respond,
Recover, and Govern. Each aspect covers a fundamental part of an organisation’s cybersecurity
posture. The CSF takes a holistic approach, meaning this approach is designed to fit any type of
organisation. The framework’s pros and cons are listed below:

2.2.23.1 Pros

o The CSF provides a flexible approach that any organisation can adapt to fit their exact needs
and requirements.

o This framework is widely acknowledged and comes from NIST a reputable source. Therefore,
it has seen wide spread adoption in the industry. Meaning that different organisations can use
the foundations laid out in this framework to facilitate security-based collaboration.

2.2.2.3.2 Cons

e Asthe CSF is designed to provide high-level guidance, it lacks detailed and actionable
information.

e The broad scope the CSF provides can make it challenging for organisations with a lack of
cyber security expertise to properly adapt and action the framework.

e The CSF is a voluntary framework, meaning that no third-party organisation requires it for
compliance. This can lead to some organisations failing to implement it correctly, or entirely.
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Figure 3: NIST Cybersecurity Framework - [65]



2.3 Mobile computing

Mobile computing [72] refers to computing devices that are not fixed to one location and are usually
categorised by being battery-powered. This section further outlines the paradigm of mobile
computing.

2.3.1 Mobile Device types

There are three main classes of computing devices that satisfy the aforementioned attributes. These
classes are; Mobile phones [73], Portable Computers [74], and Wearable Computers [75].

2.3.1.1 Mobile phones

Mobile phones can be considered one of the most ubiquitous classes of mobile computing devices
[76]. Originally mobile phones were primarily used for voice telecommunications, but with the fusion
of technological advancements, these devices are now used for a wide range of applications and
services [77]. Examples of devices that fall under this class include, basic feature phones and
smartphones running various operating systems such as Android or iOS.

2.3.1.2 Portable Computers

Portable computers are devices that, while they are still portable, are larger than other mobile phones
and smartphones. Laptops, tablets, and notebooks fall into this category. Portable computers trade an
aspect of their portability for increased versatility through larger hardware components. For example,
while a laptop is portable it cannot be as easily transported compared to a smartphone.

2.3.1.3 Wearable Computers

Wearable computers are computing devices designed specifically to be worn on the human body to
sense, compute, run applications and allow connectivity to other devices and services. Examples
include smartwatches, smart glasses and fitness trackers.

Table 3 shows the various paradigms of mobile computing devices and their associated attributes.



Table 6. Comparison of mobile device types and their attributes

Mobile Device Description Battery Portability Connectivity Versatility Personalisation
types Powered
Mobile Phones Originally an evolution of Yes Designed to be Generally, Focused on Basic customisation of settings and
landline telecommunications, able to carried or | supports WIFIL, lightweight apps, often limited by the
mobile devices now include a operated in a Bluetooth, and applications like manufacturer.
range of apps and services. user’s hand 4/5G. Extra productivity tools
features vary by and games
model
Portable Computers | These are devices with more | Yes Less portable More emphasis on | Similar Full technical personalisation similar
power than mobile phones than mobile port connections, | functionality to to desktop devices
and utilise similar computing, but such as USB, discrete fixed
architecture as conventual more portable Ethernet and computing such
discrete fixed locational than discrete HDMI as a desktop
computing fixed computing
Wearable Devices that are focused on Yes Very portable, Contains limited Similar to mobile | A similar level of customisation as
Computers sensors and designed to be designed to be ports and phones, but has mobile phones.

worn by a user, for example,
fitness trackers and
smartwatches

always situated
on a user’s
physical body.

connects via
Bluetooth or
WIFI

an emphasis on
specialised fitness
applications




2.4 Android Smartphones

To understand the security model employed by Android, the ecosystem background is crucial. One of
the main reasons why the Android operating system is used widely around the world is due to its open
architecture, which in turn allows for many different original equipment manufacturers (OEMs) [78]
to utilise the Android stack for creating new related, but independent devices [79]. At a basic level, the
Android Open-Source Project (AOSP) [80] provides OEMs with a basis to further develop. While the
usage of the Android stack is decentralised [81], there is a caveat of compatibility that OEMs need to
follow. To which extent OEMs utilise the stack governs which standard must be adhered to. For
example, at a basic level, the Compatibility Test Suit (CTS) [82] criteria must be achieved. At higher
levels involving more basic components, more standards must be followed.

2.4.1 Android Threat Model and Ecosystem

While similar to standard other operating systems, the Android threat model’s attack surface is slightly
different [83]. For example, unique to mobile devices, attacks can be carried out on physical access
controls [15], by performing NFC relay attacks [84] which can be used for gaining unauthorised
access to contact payment systems, and also for gaining unauthorised access control as these operate
on the same system.

Recent works have described the differing threats to Android mobile computing and traditional
computing. Mayrhofer [85], states that these attacks are summarised under four categories, Physical,
Communication, Platform, and User interaction.

e Physical attacks consist of loss or theft of a device, leading to unauthorised usage.

e Communication attacks consist of subverted communication in a guise to gain
unauthorised access to a system.

e Platform attacks, utilising the vulnerabilities innate in Android components such as
abusing APIs and utilising platform exploits to attack other internal applications.

e User interaction attacks involve tricking the user via masquerading attacks to
capture user inputs.

While there is an overlap with the issues that traditional discrete fixed location computing and mobile
computing, some issues are unique.

2.4.2 Android Platform Security Model

Taking into account the ecosystem context and threat model, the Android security model emphasises a
balance between the privacy and security requirements of users with the needs of the applications and
services present on the platform itself. As stated by Mayrhofer [86] the Android Platform Security
Model is defined by 5 rules:

1. Multi-party consent: This states that no action should be performed without the consent of
all parties involved. The parties usually consist of the user, the developer, and the platform
and if one party vetoes a decision the action is not carried out. This idea extends between
subjects (applications and user processes) and objects (files, network sockets, memory
regions, and other underlying constituent parts). However generally if an entity creates data or
an object the creator controls it and has privileged control over it. While this is true the
location of data also matters, for example, data in the shared storage location is accessible via
all users and data in private app storage directories are governed by their creator applications.



2. Open ecosystem access: This states that inter-app communication is explicitly supported on
the platform and central vetting and registration are not required of developers and users so
much that they follow the basic tenets of the AOSP.

3. Security as a compatibility requirement: This states that devices must adhere to the
Compeatibility Definition Document (CDD) [87] which acts as a ‘hub’ for reference and states
that new devices must be compatible with new Android versions and their security benefits.
Devices that do not adhere to the CDD and CTS are not considered Android devices.

4. Factory reset restores the device to a safe state: This states that any Android device must be
able to be returned to a state where only integrity-protected applications and systems are
present and do not require essential software to be reinstalled in the event of a persistent cyber
security breach.

5. Applications are Security principles: This states that applications should not be run or
considered as fully privileged agents of the platform. Meaning that having control over a
user’s application would not automatically grant a malicious actor root privilege. Instead,
applications act as individual sandboxed environments with limited interaction with other
applications on the same level. It also means that applications do not have permission to make
functional changes on systems that affect other applications and services on the device.

These foundational rules are applied to the Android stack (see Figure 4)
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2.4.3 Android Platform Attack Vectors and Mitigation

It is crucial to understand how cyber-attacks target the various aspects of the Android stack as shown
in Figure 4. The following section outlines some of the threats and the appropriate mitigations each
layer of the Android stack faces.

2.4.3.1 Application layer

The application layer consists of both standard native Android applications and third-party
applications. This is the layer that the user has the most direct interaction with, and so where the
majority of user-based functions are performed such as permission consent.

2.4.3.1.1 Threats

The versatility of Android often means that applications end up handling sensitive user data, such as
PII [89]. Therefore, one of the common threats present on the application layer is that of data leakage.
A user’s data could unintentionally be accessed by a malicious actor. This could be caused by many
things such as, data protection procedures being followed incorrectly, inadequate permission
management and weak authentication and authorization systems [90].

2.4.3.1.2  Mitigation

The mitigation strategy for handling potential data leakage is to ensure proper application sandboxing
[91], having applications run in isolation helps ensure data protection and following the idea of multi-
party consent to ensure that an application cannot access PII without the user’s permission, therefore
reducing the risk.

2.4.3.2 Application Framework layer

The application framework layer hosts the essential APIs and services that constitute applications
[92]. This layer hosts inter-app communication services as well as critical application management
systems such as the notifications manager, allowing applications to display alerts such as received
messages [93].

2.4.3.2.1 Threats

The application framework layer employs inter-application communication (IAC) mechanisms, such
as Android’s intent system [94], which allows the launch of other applications through the use of
startActivity. Vulnerabilities in IAC mechanisms exist and have been exploited for financial gain.
Holberg [95] demonstrated Android Intents against Swish [96] in iOS and Android operating systems
for financial gain.

2.4.3.2.2 Mitigation

Some of the mitigation strategies for protecting against IAC attacks are through the use of regular
updates to patch potential vulnerabilities and keep IAC API services secure by ensuring that proper
procedures are followed [97]. For example, guaranteeing that data incoming to the IAC mechanism is
authenticated and validated to minimise the risk of a malicious action. Multi-party consent is also
crucial, especially when PII or financial information is involved.



2.4.3.3 Libraries layer

The libraries layer of the model provides the various code bases that applications rely on, also
including libraries for graphics, data handling and communication as well as other management
services and the Android Run Time (ART) [98] ART primarily performs ahead-of-time (AOT)
compilation of an application into native machine code for optimisation and security.

2.4.3.3.1 Threats

The primary threat to the libraries layer is through the improper usage of libraries, either through not
regularly updating libraries or allowing unverified third-party libraries which may include malicious
content. For example, the Mavensgate attack [99] exploited poorly maintained or abandoned libraries
in ApacheMaven [100] repositories via malicious attackers enforcing DNS TXT record [101] rights to
allow for malicious library updates to be pushed and distributed as legitimate packages.

2.4.3.3.2 Mitigation

The mitigation strategies for reducing the risk that threats to the libraries layer pose, involve ensuring
that libraries are regularly vetted and authenticated, as well as making sure that secure integration
practises are followed. For example, app developers should not implement depreciated libraries or
functions [102]. Android’s applications are security principles, meaning that infected applications are
sandboxed and isolated away from other processes and applications, reducing the impact of a
compromised library [91].

2.43.4 Linux Kernal layer

The Linux kernel layer is the foundation for the Android operating system [81]. It is responsible for
managing hardware resources, such as handling device drivers and controlling inputs from peripherals
such as USB ports and sensors. It is also responsible for providing core system programmes and
services and enforcing the strict access control sandboxing rules as well as permissions for the
subsequent functions and applications. While this dissertation refers to the kernel as the ‘Linux
Kernal’, the Android Kernal is an adaption of the Linux Long Term Supported (LTS) kernel [103].
LTS kernels are combined with updated patches to create the kernel layer.

2.4.3.4.1 Threats

Due to the importance of the Kernal layer, the impact of possible threats can be crucial. If a malicious
actor compromises the Kernal layer, then it can lead to major consequences [104]. For example,
malicious actors could gain root access to a device leading to system-wide security compromises. It
could also allow malicious actors to install hard-to-detect malware such as RATS to provide persistent
access to the attacker’s server, potentially violating the security of the entire system, and opening up
the possibility for attackers to take over the device and perform lateral network attacks. DirtyCOW
[105] is a race condition vulnerability in the Kernal layer that affects the subsystems involved in the
Copy-on-Write mechanism. The exploit allows unprivileged users to gain write privileges on read-
only memory locations. Meaning malicious actors could inject arbitrary code.



2.434.2 Mitigation

To mitigate the impactful threats posed against the Kernal Layer, a defence-in-depth approach is
needed. Kernal hardening techniques such as the Kernal self-protection Project (KSPP) [106]
introduce security features such as Address Space Layout Randomisation (ASLR) [107] protecting
against buffer overflow attacks by preventing malicious actors from working out external application
address space contents through randomisation. SELinux [108] can also be used for Kernal hardening.
This system enforces mandatory access control (MAC) [109] policies, which govern what processes
and applications can do even when they are compromised in turn protecting sensitive information
against unauthorised access via compromised elements.

Regular updates and patching of the kernel can protect against exploits [110], for example, more
recent android kernel updates address the issues caused by the DirtyCOW exploit. The factory reset
mechanism as described in section 2.4.2, provides another mitigation strategy. If a system is
compromised at a fundamental level, then acting as a last resort a factory reset will wipe all device
data and reinstate the original trusted kernel configuration. In turn, removing the majority of persistent
malware on a device.

2.43.5 Hardware Layer

Below the android software stack sits the hardware layer, while not directly related to Android, the
Hardware layer consists of independent physical elements that the kernel interacts with via drivers.
For example, the hardware layer consists of processing units such as the CPU and GPU. Memory and
storge devices containing persistent and temporary data storage. Input/output devices, such as
keyboards, speakers, display screens and other peripherals. The device sensors are also present on the
hardware layer. The Android system that controls the interaction between hardware and the android
stack is also known as the hardware abstraction layer (HAL) [111], as this layer allows developers to
interact with lower-level hardware through the abstraction of hardware specifics.



2.5 Mobile Sensors

This section will expand on the sensors described in Section 2.4.3.5.

2.5.1 Common Sensors

While there are some common shared hardware sensors across mobile devices, such as
Accelerometers and Proximity sensors [112], there also exist less used sensors. This is partly due to
the decentralised nature of the android ecosystem. OEMs take into consideration the type of device
being created and its use case [113]. For example, Wearable computing devices will have an emphasis
on fitness sensors, meaning there is an increased chance for those devices to contain heartrate or
oxygen sensor technology.

Table 4 below shows the common sensor employed in the android ecosystem and their applications
and functionalities. It is also of note that these sensor technologies are not unique to the mobile

computing paradigm.

Table 4: Sensor types, their applications and functionality

Sensor Type Applications and Functionality

Ambient Light The ambient light sensor [1] is used to measure the intensity of light in a phone’s environment. Used mainly to
adjust the display’s brightness for optimal power efficiency and visibility.

Camera The camera [114] is used to take photographic images and videos. Quality varies based on camera resolution

Microphone The microphone [115] is used to detect sound waves and convert them into electrical signals. Can be used in

voice calls and voice commands

Proximity Sensor

The proximity sensor [116] uses an infrared LED and an infrared light sensor to calculate the distance from an
object. Mostly used to turn the screen off during a phone call.

Magnetometer (compass)

The magnetometer [117] is used to detect magnetic fields and provide navigational orientation for mapping
applications.

Global Positioning System
(GPS)

The GPS [118] interacts with satellites in orbit to accurately determine geographical position. Used in mapping
and navigation software.

Light Detection and

The LiDAR [119] sensor is used to measure depth and distances via emitted laser pulses. Used to create 3D

Ranging (LiDAR) maps of objects

Accelerometer The accelerometer [120] is used to measure vibration, tilt and acceleration along the x, y, and z-axis. Mainly
used to determine screen orientation.

Gyroscope The gyroscope sensor [116] is used to provide more accurate angular velocity data than the accelerometer. Used
for video and image stability.

Fingerprint The fingerprint sensor [121] is a biometric authentication system so that only the approved users can gain access

to the device.




Sensor Type Applications and Functionality

Touchscreen The touchscreen sensor [122] detects localised pressure on the screen surface via changes in electrical currents.
Used to allow users to interact with the touchscreen.

Barometer The barometer sensor [123] is used to measure atmospheric pressure. Used to measure weather patterns and
estimate altitude.

Pedometer The pedometer [124] is used to count the steps of the user, determined by values outputted by the accelerometer.
Used to track physical fitness.

Thermometer The thermometer sensor [125] comes in two types. Internal thermometers are used to control device temperature
to prevent overheating and external thermometers that measure outside ambient temperature.

Heart Rate The heart rate sensor [126] is used to track a user's heart rate via LED and optical sensors. Used in health
applications and measuring stress levels.

Air Humidity The air humidity [125] sensor is used to measure the ambient air humidity.

Hall The hall sensor [127] is used to measure and detect changes in magnetic fields, usually from devices. Used to
detect magnets in flip covers or devices like VR goggles.

Geiger counter The Geiger counter sensor [128] is used to measure the amount of ionising radiation in the environment. While
not a common sensor its existence demonstrates the versatility of smartphone sensors.

2.5.2 Ambient Light Sensor (ALS)

This section will outline and highlight the ambient light sensor touched on in table 4.

2.5.2.1 Ambient Light Sensor Usage

Ambient light sensors [1] are hardware sensors that use various methods to detect and measure
received light, in units of lux. Lux is the measured light over one square metre [129].

ALS components are an essential part of many different industries, due to their ability to measure the
surrounding ambient light levels. The ALS market cap is predicted to reach “$15.7 billion” as of 2030
[130] The most common form of ALS technology is in consumer electronics, which this paper focuses
on. The following section highlights the various industries that benefit from ALS technologies with
their functionality and purpose.

2.5.2.1.1  Consumer Electronics industry

ALS technology in the consumer electronics industry has widespread adoption in handheld devices
[131], such as smartphones and laptops. In which the automatic adjustment of screen brightness is
based on the ambient light conditions. The main benefit is reducing battery usage by improving the
energy usage efficiency of the device. The main purpose of this is to provide the best optimal screen
visibility for the user whilst also conserving the device's battery life.



2.5.2.1.2  Automotive industry

ALS technology is integrated into a large portion of adaptive internal and external automotive lighting
systems. External lighting systems allow for headlights to automatically switch between high and low
beams in accordance with the ALS conditions. This increases the safety of headlights as the correct
luminescence allows the driver to see without blinding other drivers, in doing so increasing overall
road safety for everyone. Internal lighting systems also exist, these adjust the light inside the car and
its dashboard to be comfortable for the human eye [132].

2.5.2.1.3 Smart home industry

ALS technology is also employed in the smart home industry through quality-of-life devices, such as
automated windows, blinds, and smart light bulbs [133]. These devices work via, measuring the
available natural light levels and acting accordingly and create a comfortable environment according
to the user’s prerequisites. As with most ALS industries the main purpose is to lower energy usage and
increase user comfort.

2.5.2.1.4  Medical Industry

ALS technology is also used in the medical and healthcare industry. ALS has seen some use in
improving the tracking of sleep schedules and monitoring patients’ natural light exposure [134]. Its
main purpose is to aid in providing accurate information for a patient's medical professional to help
make decisions to help.

2.5.2.1.5 Industrial Automation
ALS technology can also be used in factories and other manufacturing situations [135], in a lighting

capacity. In an effort to reduce costs, some industrial organisations use ALS to adapt lighting systems
to save on costs whilst also maintaining the required light levels for optimal productivity and safety.



2.5.2.2 Different types of ALS Technologies

As seen in the previous section there are many use cases for ALS, each industry having different
requirements leading to different ALS solutions. Each ALS type has its own construction with
advantages and disadvantages. Figure 5 below highlights what the section below will describe with an
emphasis on photodiodes and phototransistors.
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Figure 5: Types of Ambient Light Sensors

2.5.2.2.1 Photo Diodes

Figure 6 shows a Photo Diode, these are semiconductor devices that are able to generate a voltage or
current when there is light exposure. This is done by photons with sufficient energy colliding with
atoms on the substrate material, releasing an electron and creating an electron-hole pair via the
Photoelectric effect [136]. These pairs then create the flow of electric current. The flow being
determined by the number of photons colliding with the sensor, the subsequent current being directly
proportional to the light intensity. Photo diodes operate in two modes: photoconductive and
photovoltaic modes. Photo conductive generates a current whereas photovoltaic generates a voltage.
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Figure 6: depiction of a photodiode



2.5.2.2.2 Phototransistors

Figure 7 shows a Phototransistor, these are devices that combine the different properties of transistors
and photodiodes [137]. They are designed to convert light input into electrical current, allowing for
increased control and amplification of the output signal. Phototransistors are constructed of three
semiconductor layers; the base, emitter and collector, these layers form the P-N junctions; different
configurations also exist such as P-N-P and N-P-N. It is also important to note that configurations
without the base also exist as the base allows for a threshold to be set. When light falls onto the base-
emitter region electron-hole pairs are formed, these are then allowed to flow across either the emitter
or collector as current. The small current created by the base-emitter controls the much larger current
flowing from the collector to the emitter creating gain or amplification.

Collector
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Figure 7: depiction of a photo transistor

2.5.2.2.3  Other Light Sensors

Photodiodes and photo transistors are the most common forms of ambient light sensor technology
employed in smartphone systems [138]. This is because their simplicity makes them cheap to
manufacture while maintaining a high level of sensitivity and fast reaction times.

Other common light sensor technologies include; Photo Interrupters [139] [see Figure 48], Photo CdS
Cells [140] [see Figure 49], Colour Sensors [141] [see Figure 50] and Silicon Photomultipliers [142]
[see Figure 51]. The way that these ALS technologies are integrated into smartphone technology also
affects their use. For example, there are two common integrated circuit types [143]; Digital [see
Figure 52] and Analogue [see Figure 53].



2.6 Related Works

This section will discuss the existing literature surrounding the attack surface of android devices,
enacted through vulnerabilities and characteristics present within said system, with a focus on
smartphone sensors and the role the ambient light sensor plays in information leakage.

This section will cover relevant literature on the security vulnerabilities in android systems, motion
sensors, device fingerprinting, sensor fusion, and light-based attacks.

Partly due to the frequent everyday use of the android stack, there exists a plethora of security
vulnerabilities. As described by Bhat et al. [144] These can include Hardware-based attacks[144],
Kernel-based attacks[144], Hardware abstraction layer-based attacks[144], and application-based
attacks[144]. Aalqazzaz et al. [145] also describe indirect methods, such as, power side-channel
attacks[145], public resources side-channel attacks[145], and Motion sensor side-channel
attacks[145]. While these categories are true representations of attacks on the Android stack, this
dissertation focuses on hardware-based attacks.

There also exists a plethora of security mitigations against these attacks. For example, in work done
by Bhat et al. [144], mitigation tools are outlined, such as Apex [146] which provides extensions to
the Android permission model allowing for restrictions to resource usage and granting selective
permissions. XManDroid [147], a security framework for extending the monitoring mechanism for
detecting a preventing escalation attack. It can be noted that due to the complexity of the Android
platform, with each attack targeting specific technical abnormalities having universal mitigation
strategies becomes increasingly difficult.

Side channel-based attacks while not based on direct attacks against innate technical vulnerabilities in
the android stack but are instead based on indirect means of attack such as information leakage, these
still have the same specificity issues with mitigation strategies due to complexity.

While the aforementioned techniques such as kernel hardening can reduce the attack surface area, this
paradigm relies on information leakage. For example, Han et al. [148] demonstrated PII violation by
using accessible accelerometer data to infer the starting point and trajectory of an individual.

2.6.1 Motion sensors

This section will focus on side channel motion sensor attacks and the related works.

In general motion sensors constitute two different sub-paradigms [149], hardware-based and software-
based. The accelerometer, gyroscope and to a lesser degree proximity sensors are hardware-based, and
built using these as a base, the software sensors include gravity, game rotation vector, and linear
acceleration. These motion sensors whilst providing useful motion data have also been used to infer
PII, such as location data [148], [150].

Another example is that it has been proven that a user’s keypad inputs can be secretly inferred via the
impact of their taps on the device, this was shown by Xu et al. [151]. Further work by Maiti et al.
[152] has used this technique to capture PIN entry data on a mobile device. Michalevsky et al. [153]
have also used similar motion sensor attack vectors to achieve a success rate of 50 per cent when
classifying speaker identity using gyroscope motion sensors. Implemented with a limited dictionary
success rates rose to 65 percent. Zhang et al. [154] also used the suite of motion sensors for hot word
detection. The sound recording capabilities of gyroscopes are limited, only being able to pick up
signals lower than 200 Hz. [155] Human speech is around 116 Hz to 217 Hz. As a result, this opens
up the possibility for potential eavesdropping attack vectors especially if sample rates are improved,
thereby increasing the classification rates.



As mobile devices are by definition mobile, this means that just by having a device present on a user’s
person they are producing information that could be used to classify their motion type. For example, if
the user is in a car, on foot or running. Bedogni et al.[156], among other researchers [157], [158], have
demonstrated that motion sensors can infer these motion types. These works have been carried out by
performing feature extraction and data classification modelling on gyroscope and accelerometer
inferred data. Other researchers [159] also performed similar classifications using the magnetometer
and linear accelerometer. Zhang et al. [160], showed that motion sensors have a legitimate energy-
efficient location tracking use case, they used the orientation sensor, the accelerometer along with Wi-
Fi as a substitute for the power-intensive Global Positioning System (GPS).

While attacks on a user’s movement have been shown possible, researchers have exposed that motion
sensors have also been shown to have a use case in handwriting authentication related to wrist
movement [161], [162], [163]. Further work has shown that accurate motion predictions can be
performed. Maiti et al., [164] also showed that the motion sensors on a wrist wearable device can be
used to infer the combinations to mechanical locks as motion and rotational information is leaked as a
user unlocks a lock via wrist rotation. Mylonas et al., [165] also expressed the credibility and
admissibility of sensor data, such as motion sensors in a court of law and discussed the inherent
characteristics of smartphone data and their use to law enforcement agencies. Proving the high
standard and admissibility of inferred motion sensor data.

2.6.1.1 Device Fingerprinting

While information leakage from motion sensors can be susceptible to attacks, another attack vector is
that of device fingerprinting. As sensors are physical objects, needing to be fabricated and assembled
to take very precise measurements, they are susceptible to negligible manufacturing irregularities.
While the irregularities would be unaffected and uniform in their output, it is possible for two sensors
to give different average readings. The difference being the manufactured irregularities, which can be
taken to uniquely identify a sensor. Das et al. [166] showed this to be true by utilising the
discrepancies found in gyroscope and accelerometer outputs to allow internet entities to track users in
lieu of browser cookies as some Android sensors do not require express user permission to be
accessed [167].

Thereby circumnavigating the need for the user’s explicit permissions. Dey et al. [168] demonstrated
this phenomenon on 25 Android phones and 2 tablets with a 96% accuracy, whilst taking into account
real-world conditions. Bojinov et al. [169] further show permission avoidance via the manufacturer’s
calibration errors in the accelerometer sensor. This time being accessed through JavaScript running in
a mobile browser. While not permission-adverse, they showed the same tracking ability through
similar discrepancies in the microphone-speaker system.

2.6.2 Sensor fusion

The feasibility and accuracy of user tracking and environment fingerprinting from information
leakage sources increase the more sensors are used. This is shown through SurroundSense, Azizyan et
al. [170] showed that the combination of ambient light, colour, the sound captured by a phone's
camera and built-in microphone as well as the movement gathered by the accelerometer allows for an
accurate logical localization rate of 87 per cent. Shen et al. [171] showed the combination of an
accelerometer, gyroscope and magnetometer can be used to track user input on their smartphone
device. Malti et al. [172], Wang et al. [173], and Lui et al. [174] have also explored motion/sensor-
based inference of user keystrokes on smartwatches. Miluzzo et al. [175], Cai et al. [176] and Owusu
et al. [177] show that similar techniques of using the accelerometer and gyroscope can leave
smartphones vulnerable too. These related works highlight the security and privacy issues that



multiple compromised sensors present. Although some sensors require express permission from the
user to access, they nevertheless are still a valid attack vector as often users misinterpret perceived
risk as actual risk, as shown by Mehrnezhad et al. [178] thereby allowing access to sensors that could
open up potential attack vectors. Simon et al. [179] also showed that when granted access to the
microphone and camera, a device's pin can be inferred. The camera is used to track device orientation
and the microphone is used to infer tap events. Further showing the applicability of sensor fusion side-
channel attacks.

2.6.3 Light-based attacks

Although the movement sensors, such as the accelerometer are one of the most widely discussed side-
channel attack vectors in the literature. Do et al. [180] presented over 100 research papers just on
visible light communication (VLC) systems utilising light as an information transfer vector. As light
offers another valuable side-channel attack vector. Backes et al. [181], [182] showed that information
leakage is possible. Through the reflections of diffused light off objects, such as the user's eyeball,
shirt and glasses. Allowing for the original, possibly confidential data displayed on the source screen
to be reconstructed. Kuhn [183], showed that emanations from a cathode ray tube (CRT) display can
be reconstructed from the diffused reflection on a wall and showed that in low-light levels, the
reconstruction is very effective. He used a “Hamamatsu H6780-01 photosensor module” which
contained a photomultiplier tube (PMT). Later experiments by Schwittmann et al., [184], [185]
achieved the same outcome using ambient light sensors. Xu et al., [186] demonstrated a similar
experiment from a distance of 70 metres. Chen et al. [187], and Sun et al. [ 188] expanded on earlier
work, they demonstrated a keystroke inference attack via the analysis of a user’s eye movements and
also showed that recording the motion of a device can be used to infer a user’s typed inputs. All
culminating is further violations of PII information.

Holmes et al. [189] showcased further inference attacks via light emanations from a screen-detected
from a smart device such as a smartwatch can be used to determine the distance of the wrist from the
screen and therefore the keys being pressed. This can also be used in conjunction with database
information to detect and identify potential webpages from the light emanations. Leading to a
violation of user privacy and circumnavigating existing security protection policies.

Furthermore, Maiti et al. [190] demonstrated the attack surface of Smart Bulbs, violating the target’s
privacy and security through inference attacks on audio and video playback from the multimedia-
virtualization functionality of the Smart Bulb. They also exposed the possibility of covert channels out
of a secured network using the bulbs' visible and infrared light characteristics for data exfiltration.
Consumer Smart bulb technology is not considered a common attack vector, meaning that users are
less likely to take security precautions as they potentially would with other scenarios such as
password protection. Earlier work related to smart bulb’s functionalities by Ronen et al., [191]
highlighted that on top of data exfiltration, researchers were able to create strobes of light at epilepsy-
inducing frequencies. This means that as well as PII inference leakage, physical harm could
potentially be done to users by malicious actor

Just like accelerometers and gyroscope motion sensors can be used to infer a user’s location, the same
can be done with light as a metric. Demonstrating this, Kuo et al., [192] used a commercial LED
light’s ability to perform optical pulses that are imperceptible to humans, to create an indoor
localisation system. They showed that in conjunction with a smartphone’s ALS, accurate indoor
localisation can be achieved via multiple light sources. Other works have replicated this system [193].
Work by Xie et al., [194] achieved similar results. Their ‘Light Intensity-based Positioning System’
(LIPS) took ALS from smartphones and created an indoor positioning system that could operate with
a sole light source, improving on previous work.



Li et al. [195] created ‘Epsilon’ a system that handles multiple LED anchors to communicate across
the same visual band to allow for localisation, obtaining accuracies of 0.4m, creating a system viable
for localisation in large indoor spaces such as warehouses. Rajagopal et al., [196] use a similar
system using a smartphone camera’s shutter speed to communicate between the device and modified
LEDs to provide localisation. Multiple works use various methods to access modified LEDs [197],
[198], [199], [200]. With some other works tackling innate issues such as tracking with uneven
distribution of light sources [201]. Zhang et al., [202] created PIXEL, a system that archives indoor
visible light positioning (VLP) localisation by addressing uneven sampling rates with adaptive
downsampling and computational optimization algorithms caused by low-cost equipment.

While the majority of light-based localisation systems that can operate off a user’s ALS system rely
on the sender component to be modified in some way, other works have been able to create indoor
localisation techniques using unmodified light sources. Zhao et al., [203] used Navi Light which
utilises inertia measurement units (IMU) created by inertia light sensors, being other sensors such as
accelerometers and gyroscopes used with ambient light sensors to create a light intercity field (LIF)
map. Whereby the IMU can be cross-referenced with the LIF map to show the device location in a
premeasured environment. Xu et al., [204] achieve a similar end result using IMU based dead
reckoning with location fixes.

Qu et al., [205] in conjunction with the IEEE also present comparisons to the various methods of
VLC-based localisation. Further work by the IEEE [206] discusses known issues with VLP
technology with the guise of overall standardisation. One of the main issues with VLC and VLP
comes from the potential lack of dimensionality in ambient light caused by the simplicity of ALS.
Previous works have addressed this through various means, such as using more than one sensor, as in
the case of IMU. Wang et al., [207] provide another solution through the use of light spectral
information. Through the capture of RBG values, which most ALS have the inherent ability to
capture, they were able to fingerprint indoor locations at a higher ability compared to that of one-
dimensional light intensity information.

The aforementioned works in this section have shown that while in general light as a medium for the
transference of sensitive information has been well documented, the sole use of ALS present on
smartphones for location inference through the use of digital ‘Fingerprinting’ environments is
lacklustre. In most cases, this is easily done via the implementation of multiple sensors, such as was
done in work by Azizyan et al., [170]. Fundamentally, as shown by the aforementioned works, the
main factor hindering security comes from the fact that on Android the ALS system can be utilised
without express permission from the user [208], leaving the device vulnerable.



Chapter 3: Methodology

In this section, the methodology of the project is outlined. This chapter provides a detailed
explanation of this project’s research design choices, its data collection method rationale and its data
processing techniques. The primary goal of the project is to create and establish a systematic and
methodological way in which ambient light sensors on smartphones can be used to infer information
that can lead to device localisation through digital fingerprints of various locations. This will answer
the research question “How can smartphone ambient light sensors (ALS) be exploited to infer
environmental information and what measures can be taken to mitigate the potential privacy and
security risks”

3.1 Research Design

This paper uses a mainly quantitative approach to answering the research question, combining the
numerical analysis of light data, signal processing, and preliminary classification through the use of
machine learning with qualitative insights into the potential privacy and security risks. Qualitative
methods are also used to create a mixed-method approach.

3.2 Project Architecture Design

This project follows a dual-architecture approach. As seen in Section 4.1. The first being the ALS
recorder application and the second element is the data processing platform. This architecture was
designed in this way for several reasons, but primarily because of the impracticalities of presenting
and performing data processing on a smartphone device. This modular approach also allows for a
more streamlined approach to making changes or improvements during the development process. In
addition, as machine learning techniques were implemented processing on a larger workstation
becomes more practical.

3.3 Data collection
3.3.1 Theoretical Rationale

The rationale behind this project is that as smartphones have progressed technologically, so too have
their use and their prevalence in everyday life. This means that smartphones have increased
interaction with information of all types including sensitive information. They also have many sensors
which allow them to interact with their environment more efficiently, but this can also mean that they
“know more” than the user recognises. Onboard sensors include amongst many others (see section
2.5.1) an ambient light sensor (ALS). This is more commonly used to control screen brightness under
various lighting conditions to save battery power. However, as shown in the literature review (Section
2.6) there is a lack of literature surrounding the sole ALS and the possibility of information leakage.
This project is focused on the fact that the security and privacy implications for localisation have not
been adequately studied.



3.3.2 Selection of Tools:

The device used in this project is the Samsung Galaxy S10 plus (SM-G975F/DS) [209] running
Android 12 also known as Snowcone. This device was chosen because Android 12 is one of the most
common Android operating systems in use [209] and despite its age, the S10 Plus is still quite popular
[210]. This then reflects a real-world situation. In addition, the availability of a device for
experimentation was taken into account.

3.3.2.1 Smartphone Selection

The Samsung Galaxy S10 Plus has its ambient light sensor integrated within the Android sensor stack.
As shown in Figure 8, the Android open-source project (AOSP) stack is the standardised framework
that allows and controls the interactions between the devices' software components and hardware
components. Sensors are the specific hardware this paper is concerned about.

The Android stack includes security protocols and measures that govern how hardware such as
sensors are interacted with by applications. For example, the physical ALS sensor the “AMS
TCS3407 Uncalibrated Lux Sensor” [211] as used on the device is capable of creating RGB values
however due to the security limitations of the stack only the lux value is exposed.
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Figure 8: AOSP android architecture stack - [213]

3.3.2.2 ALS Recorder Application

The mechanism for recording the ambient light is a custom-created Java-based application. This
application was designed so that the raw lux data could be formatted in a JavaScript Object Notation
(JSON) format. While there also exists ALS recording applications on the Android Play Store [213],
using a custom-built application provides more control of the details of the application. For example,
the ability to create custom metadata was crucial.

3.3.2.3 Data Storage Format

The rationale for the output of the ALS recorder application being in the JSON format is that JSON is
understood as an industry-standard communication format between applications. This is mainly
because JSON is text-based but is human-readable and easily understood by computers.



3.3.2.4 Inter-System Communication

A way is needed for the two systems to communicate and there are many different approaches for
inter-system communication. For example, these approaches include manual file transfer, cloud-based
transfer, and automated file transfers such as the Android Debug Bridge (ADB) [214]. This project
made use of ADB, which is a command-line tool that implements a background process (daemon) on
each system to facilitate communication. This system was chosen due to its versatility and efficiency.

3.3.3 Location Selection and Data Acquisition
3.3.3.1 Location Selection

As the basis of this project is using the ALS for differentiating between locations, the location
selection criteria were important. In total, there were 5 locations chosen to give ample opportunity for
enough variability in datasets to allow for different patterns to be detected. This project focuses on
indoor localisation with 4 out of 5 locations are indoors. The final location, situated outside was
chosen to show the disparity in indoor and outdoor locations. Each location was chosen based on its
individual physical and light attributes. For example, each indoor location experiences a stable and
constant natural light source.

3.3.3.2 Data Acquisition Protocol

The decision was made to place the ALS recorder in the same stable, stationary location in each room,
in order to reduce noise in the data and increase the reliability and consistency of the data. It could be
conceivable that in a real-world example, a device would not be stationary, however, having a
stationary recording point reduces variability in the data. It is also of note that the recording period
was chosen to be 7 minutes. The reason for this is semi-arbitrary, in that having too small a recording
period would harm the usefulness of the data and having too long a period would become

impractical.



3.4 Data Processing
3.4.1 Rationale

Feature extraction and data visualisation are crucial elements in analysing and identifying trends and
patterns in the data for localisation.

3.4.2 Techniques

There are a number of different techniques employed in this project. These being, data visualisation,
key feature extraction, and also machine learning, which will be outlined in this section below.

3.4.2.1 Data visualisation

For data visualisation, Time-series graphs were chosen to represent the light-intensity data. This
provides a visual representation, allowing for a basic understanding of the data to take place. As an
example, it can be seen if a location is either inside or outside due to the increased lux values. With
inside being less than 500 lux and outside locations during the day being in excess of 1000 lux.
Another positive of this technique is that anomalies or interference from natural phenomena can be
easily seen. Such as a cloud or other temporary obstruction.

3.4.2.2 Key feature extraction

As each data set might seem different when compared to others taken in the same location, they share
similar attributes or features. These are usually governed by the environment they were taken in. For
example, data taken from a room with one natural light source compared to a room with a different
layout and artificial lights will have a different underlying common factor the datasets will share. The
amount of information available is limited to the lux value. As well as the lux value’s relationship to
itself and the timestamp. However, disambiguation is still possible, for example, one data set would
have different minimum, maximum and mean range values compared to another. In an effort to
achieve a higher level of distinctiveness, this project uses many key features as outlined in section 5.1.

3.4.2.3 Machine Learning

The goal of this project is to analyse the data taken from multiple different environments and be able
to develop and ascertain the intrinsic digital signature that is unique to its environment. This digital
signature consists of the key features within a given dataset, representing the unique characteristics of
each location. With a developed signature that represents a location, specific environments can be
identified from new data, even when there as small variations in the data caused by differing times of
day or the device being in a slightly different location in the environment. A possible avenue for
gathering and comparing an environment's digital signature is through the use of machine learning.
For example, machine learning is used in other industries, such as in biometric identification by
analysing a face’s biometric digital topography and creating a digital signature for comparison [215].

Supervised classification machine learning algorithms [216] are a sub-class of machine learning
algorithms specifically designed to take labelled data and train against it to create models to predict
the class of new unlabelled data. This approach is well suited to this project since the task is to assign
incoming ALS data to a specific environmental category. In section 3.4.3.3.3 the machine learning
classification models are further outlined.



3.4.2.3.1 Classification Model Selection

The choice of which classification models to implement depends on a number of factors [217], the
type of data, the quantity of data, the data complexity and the end goal play a factor in which model to
apply to a given data set. As there are many different classification models, each with its own
positives and negatives, experimentation is important. In this work, various classification models were
experimented with, see section 5.2. However, these aforementioned considerations apply to the
datasets as follows:

e Data Type: Since the data consists of continuous light intensity values with a possible high
degree of variability, models [217] such as Naive Bayes and Logistical Regression are well
suited.

e Data Quantity: The size of the data set matters, for example, some classification models, like
Naive Bayes and J48 Decision trees require less training data. However, with larger data sets,
models such as SMO and Random Forest are able to capture more nuanced patterns [217].

e Data Complexity: Data complexity also must be accounted for. For example, the overall
range of lux values plays a factor as well as the sub-category lux value range. Meaning some
models would find it easier to account for the disparity in lux values between indoor and
outdoor environments. Multilayer Perception models are a good candidate for this as they are
able to handle complexity through recognising non-linear patterns in data [218].

o End Goal: as the end goal for this project is to accurately classify new data into specific
environments, models that are able to handle unseen data are advantageous. Logistic
regression and Random Forest models are good candidates due to their ability to handle
variable data conditions [217].

3.4.3 Selection of Tools

For data processing, there exist a number of different tools to help achieve the aforementioned
techniques. Therefore, the rationale and methodology behind these decisions are crucial as each
technical part of the project requires different tools as the individual requirements are different.

3.4.3.1 Programming Language

For both the data visualisation and key feature extraction processes the appropriate software tools
must be chosen. While there are many different programming languages, each one has its own use
case, and, some languages excel in data processing and analysis [219]. While most commonly used
programming languages are both powerful and versatile, the programming language Python is a
popular choice [220]. Python allows for the use of many different libraries, such as pandas [221],
NumPy [222] and SciPy [223], facilitating data analysis and visualisation.

Another consideration with the choice of programming language is its applicability in machine
learning. Python has access to machine learning-centric libraries such as Scikit [224] and while not a
common library, Weka [225], which is used for calling Weka classifiers. Python also is a popular
open-source language, meaning it has a large community and many learning resources surrounding it.
Hence this project makes use of Python.



3.4.3.2 Software Platforms and IDEs

The choice of the different software platforms is closely related to the rationale for the choice of
programming language. For example, as this project is using Python, there are a number of platforms
and integrated development environments (IDEs) that could be used, such as Visual Studio [226],
PyCharm [227] and Google Colaboratory (Colab) [228]. This project uses Google Colab, which is a
software platform that implements an adaption of Jupyter Notebook [229], allowing users to write and
execute Python code via a web browser. This platform was chosen for a number of reasons, the main
reason being that it is a cloud-based platform. This means that the computation is performed in the
cloud rather than client-based allowing for external computing resources to be used. Which is useful
for performing intensive machine-learning computations.

3.43.3 Weka

There are many different software packages tailored to carry out machine learning computation, For
example, KNIME [230], Azure [231], and Weka, which are all commonly used for machine learning,
data analysis and exploration. This project makes use of the Waikato Environment for Knowledge
Analysis (WEKA) Platform for machine learning exploratory analysis. The rationale for choosing
Weka was because of its comprehensive data preprocessing capabilities, where built-in tools can
perform tasks like data cleaning automatically. Weka also has a built-in third-party Python wrapper
[232] allowing for Weka to be called in other environments, such as the aforementioned Google
Colab.

Weka is separated into 5 distinct internal applications, the Explorer, Experimenter, KnowledgeFlow,
Workbench, and Simple CLI, which fall into three categories: data set processing, machine learning
schemes, and output processing [233]. While each internal application is distinct in many cases their
use cases overlap. For example, data set processing can be performed in the Explorer as well as the
KnowledgeFlow application.

Data set processing allows the user to extract information from a given dataset, as well as perform
data processing operations such as splitting datasets into training and test sets. Data features can also
be removed through filters, thus enabling a dataset to become suitable for machine learning.

The machine learning category of internal programs allows the user to implement a list of various
machine learning algorithms. The output processing category takes the output from a given machine
learning schema and performs tasks with it. For example, evaluating rules against a test model.

3.4.3.3.1 Weka data format

The attribute-relation file format (.arff) was developed by the Machine learning project at the
University of Waikato to be used with the Weka software platform [234]. This file format is
considered a simple and easily readable format that is used to describe a list of instances which share
a set of attributes. The file format consists of two sections, the header and the body. The header
contains information such as the data types and the names of the relations and the body contains the
actual instances of the data as rows.

This project discusses the implementation of .arff files and the conversion between JSON and .arff file
formats in Section 4.3.3.1. While Weka does support other file types such as CSV [235], Weka is
purpose-built around the .arff file format so conversion to this format would be advantageous for the
project for compatibility reasons.



3.43.3.2 Weka machine learning schemes

Machine learning schemes can be considered implementations of a given machine learning algorithm.
Weka makes use of various types of machine learning schemes. For example, supervised,
unsupervised and meta-learning algorithms are made available to the user. Under these classifications,
there are many subcategories of machine learning algorithms available. Table 5 shows what machine
learning schemes are available and their descriptions.

Table 5: Weka Machine Learning Schemes

Sub- Description

categorisation

Bayes Bayes contains learning algorithms that implement the Bayes’ Theorem [236] at a fundamental level. Such as Naive
Bayes.

Functions Functions contain learning algorithms that attempt to find a function that can be used to map or estimate the dataset.

Such as Linear Regression

Lazy Lazy contains learning algorithms that make use of lazy learning to perform classification. Such as Instance-Based
k-nearest neighbour (IBk), which is an implementation of the k-nearest neighbour classification algorithm

Meta Meta contains algorithms that consist of a combination of different machine-learning models. Such as Bootstrap
aggregation (Bagging)
Misc Misc contains algorithms that do not fit in other categories or are unique in their approach. Such as wrappers that

deal with incompatibilities between training and test data sets

Rules Rules contains algorithms that adhere to a set of rules to make a prediction. Such as Decision Tables, which are
structured sets of multiple conditions

Trees Trees contains learning algorithms that are based on decision trees. For example, Random Forest makes use of n-
levels of decision trees to make predictions.

3.4.3.33 Evaluation Methods

Weka uses many different ways to evaluate the success or applicability of a classification algorithm
[237]. While all the available metrics offer insights into the data, certain metrics are more relevant for
this type of dataset. The accuracy rating metric is one of the more fundamental that measures the
proportion of correctly classified instances. The Kappa statistic is also fundamental in that it measures
the agreement between predictions and the actual classifications. The precision and recall metrics are
also very important to help understand and evaluate the chosen model’s ability to correctly identify
positive instances against false positives and the F-Measure combines the precision and recall to give
a total model evaluation score.




3.5 Ethical Considerations and Limitations

In this section, the ethical considerations and limitations of this project are addressed. In research, the
ethical considerations taken are crucial to ensure that the overall study respects the key ideas of CIA
as well as privacy.

3.5.1 Ethical Considerations

This project was conducted without any human subjects, thereby ensuring that no sensitive or
personal information could be disseminated or later collected and analysed. While the five
environments in which the experiments take place are real physical locations, no identifiable
information has been exposed. The focus of the text is solely on the interactions of ambient light with
the ALS, and while the produced digital signatures do contain unique identifiable information it
cannot be used to violate privacy.

The information contained and recorded on the ALS recording device was secured to prevent
unauthorised access, through the use of access control (ISO/IEC 27001 Section A.9) [238]. However,
since the risk and impact are minimal because of the usefulness of the captured ALS data excessive
steps to secure the data are unnecessary.

3.5.2 Limitations

This project faced several limitations in general. Firstly, this study was conducted between the months
of April, May, and June. This is only a short time span as recording over multiple months in different
seasons would help identify and reduce the influence of the relative seasonal light on the ambient light
of the environments. For example, natural light patterns change throughout the year, and the average
angle of incidence on the ASL sensor fluctuates. Also of note is that the recording periods spanned 7-
minute periods once a day for each location, meaning that whole scenarios were not captured such as
dawn, dusk, and nighttime. Also, short 7-minute periods of recording could be susceptible to
environmental phenomena influencing the results, such as clouds blocking out the sun.

As mentioned in section 2.6, device hardware irregularities could unintendedly influence the results.
Only one device was used, therefore the impact of this is unknown. Another limitation is that the
environmental conditions were strictly controlled, which would not reflect a real-world scenario. For
example, no artificial lights were used, only natural ambient light. Another limitation is that of the
dimensionality of the data, having only the lux value and its relation to its timestamp for information
does not provide as much analysable information as RGB values as an example. Finally, while it is
true that the recording device’s “AMS TCS3407 Uncalibrated Lux Sensor” [211] is RGB enabled,
these values were inaccessible and unexposed through the Android Sensor Manager API [239] due to
its security policies. However, these values could be accessed but this process would involve the
circumnavigation or disabling of Android security systems such as SELinux.



Chapter 4: Implementation

In this section, The ALS recorder design and implementation will be outlined. This was used to
measure the ambient light in various locations to uncover an environment’s digital signature

4.1 Experiment Qutline and Setup

Figure 9 shows the layout of the experiment. The experiment employs the use of the smartphone
(Samsung Galaxy S10+) as described in section 3.3.2.1, running the ALS recorder application,
(Section 4.2) which stores the data in the application’s external storage using the Android file system
architecture. The smartphone is placed in the different environments outlined in Table 6, where the
ambient light levels are recorded and stored as JSON files. After using Android Debug Bridge to
access the stored files. An external device is used to process and perform data visualisation, in which
later analysis is performed as shown in section 5.1.
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Figure 9: Experiment setup



In order to capture the ambient light fingerprints of different locations the Smartphone is placed in
multiple different locations as shown in Table 6.

Table 6: Tested Locations

Environment Location | Environment Description

Landing An intermediary hallway area between rooms

Living Room A room with a mix of natural light and artificial light.
Kitchen A kitchen area with a wider range of natural light access
Bedroom A standard bedroom with natural light access.

Outside An outdoor location with no obstructions to natural light

4.2 ALS Recorder Application

The ALS Recorder application is a Java programme that allows for access to the smartphone’s ALS
device and allows the user to input ‘locational data’ to serve as metadata providing context to the
JSON file. Figure 54 shows the UI of the ALS Recorder application.

4.2.1 Application Design

Figure 54 shows the ‘Ambient Light Sensor Recorder’, which is in a developmental stage, therefore
the UI has been built for the core functionality of the application. Which is to record ambient lux data
and convert it to a JSON format while allowing the user to append metadata in the form of
‘Locational Information’ which is used to provide environmental information and context. Meaning
that effective data collection for analysis is possible.

4.2.1.1 UI Features

Figure 54 shows the Ambient Light Sensor Recorder’s user interface features. These features include
the real-time lux data display, allowing the user to monitor the lux level in real-time. The next feature
is the Start and Stop recording buttons, these simply just begin or end the recording period depending
on the need. Finally, the ‘Locational Information’ field allows for the user to input any metadata
information such as the location of the recording as well as the time, date and any notable conditions,
such as weather.



4.2.1.2 UML Diagram

The UML Diagram presented in Figure 10 provides a visual overview of the recording application’s
internal structure and data flow. Below the relationships between the different elements shown in the
figure are outlined:

‘MainActivity’: This is the core component of the application, which handles the user interaction and
the recording process. Which is initiated by the user. It also handles the user inputs from the metadata
field. As this is the core component, the other classes are called from here too.

‘SensorManagerHelper’: This class is instituted by Android as a way to handle interactions with the
device’s ALS hardware. For example, it handles the deregistration and registration of sensors and
manages the settings controlling aspects such as the sampling rate used for recording.

‘SensorDataHandler’: This class manages the storage of the captured ALS data, ensuring that it is
correctly formatted into JSON and stored in the application's shared external storage so it can be
easily extracted. This class also handles checking to ensure storage availability and error checking.

‘Android.Hardware’: the ‘Android.Hardware.SensorEventListner’, ‘Android. Hardware.Sensor’,
‘Android.Hardware.SensorManager’ are all Android framework functions and classes that provide the
interface for interacting between the application layer and the device’s hardware through the device
drivers

Figure 10 is a UML diagram showing the internal data flow of the ASL recording application.
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Figure 10: ALS Recorder Application UML Diagram



4.2.2 Component Diagram

Figure 11 shows the component diagram, which details the internal interactions of the ALS recorder
application. The diagram presents the components outlined in section 4.2.1.2 as well as other system-
level components such as ‘ExternalStorageManager’. The main ALS Recorder Application interacts
with the ‘SensorManagerHelper’ and ‘SensorDataHandler’, which are in control of managing data
storage and sensor interactions via the Android hardware sensor manager and the
‘ExternalStorgaeManager’ respectively. Thus, showing the data flow of the application.
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4.2.3 Data Storage

Figure 12 shows an example of the JSON format created by the ‘Ambient Light Sensor Recorder’ The
JSON key-value pairs used in this project are as follows: ‘timestamp’ in the UNIX time format,
‘lightLevel” in lux, and ‘Locational Data’ being the custom metadata following the day, hour, minute,
location format.

[{"timestamp": ,"lightLevel™:74,"Locational Data":"29:13.12 Bedroom"},
{"timestamp": ,"lightLevel":75, "Locational Data":"29:13.12 Bedroom"},
{"timestamp": ,"lightLevel":76, "Locational Data":"29:13.12 Bedroom"},
{"timestamp": ,"lightLevel": , "Locational Data™:"29:13.12 Bedroom"}]

Figure 12: JSON Data Format



4.3 Data Processing
The section below outlines the data processing. This consists of three elements, data visualisation,

data feature extraction and then using machine learning classification techniques on said data
features.

4.3.1 Data Visualisation

Figure 13 shows the logic flow for creating a visual representation of each location.
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Figure 13: Data Visualisation flowchart
4.3.2 Data Feature Extraction

Figure 14 shows the logic flow for processing the ALS data and extracting a presenting signal feature,
these features are presented in section 5.1
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Figure 14: Data Feature Extraction flowchart



4.3.3 Machine learning Implementation

As described in section 3.4.2.3, machine learning was implemented in this project to perform
environmental classification on the captured ALS dataset.

With the methodology for this project’s machine learning being outlined in section 3.4.2.3, this project
implements various machine learning algorithms to perform environmental classification with varying
degrees of success through the use of Weka. As shown in section 3.4.3.3, Weka provides multiple
types of classification algorithms. Table 12 presents 16 different classification algorithms that were
applied to the ALS environmental dataset using the default Weka settings. out of the 16 classification
models tested, the 3 best performing are presented in section 5.2. Weka also provides pre-processing
methods, such as cross-validation and automatic test and training data set splitting.

The best-performing classification algorithms were, Naive Bayes [240], J48 [241], and Logistic
Regression [242]. These classification algorithms in general demonstrated a higher level of accuracy
compared to some of the others. However, due to the nature of the dataset, as shown in Figure 32, the
outside dataset was correctly chosen with 100 per cent accuracy. This means that accuracy scores
presented with the outside data do not truly represent the viability of the models.

As a way to present this fact the same classification models were run with the omitted outside dataset
as shown in the second column of Table 12. Also, of note is that as this was a preliminary approach to
machine learning, models could be improved through various means, such as better tuning, through
the use of hyperparameter optimisation [243], further explored in section 6.2. Depending on the needs
of each classification algorithm and how they interact with the data. Also, the combination of multiple
classification algorithms through ensemble learning could potentially lead to better results.

4.3.3.1 File Conversion

As described in section 3.4.3.3.1, Weka utilises the purpose-built .arff file format, and since the data
collection application outputs a JSON file, conversion is needed. Figure 15 shows an example of the
.arff file format used. Manual editing was performed through the find and replace function on
Notepad-++ [244] to achieve file conversion for compatibility.

@relation testdata

@attribute timestamp numeric
@attribute lightLevel numeric
@attribute 'Locaticnal Data' {Kitchen,Bedroom, Landing,Outside,LivingRoom}

@data
1716296833242 ,26150,0Cutside
171629€833413,26137,0utside

Figure 15: .arff file implementation



Chapter 5: RESULTS

This Section will outline the results of the project, which entails the digital representation and digital
features of each room. Then various classification models are outlined and evaluated for efficacy.

5.1 Data Visualisations and Analysis

The following sections are separated by the testing environments and entail the raw data
visualisation’s location images and outlines of said locations. Each recording of ambient light consists
of 7-minute-long sessions from a stationary position as indicated. These raw data visualisations help
to gain insight into the data and understand the data variations, patterns and anomalies. We will also
explore the extracted digital key signal features from each localised environment to help with
localisation differentiation.

5.1.1 Bedroom

Table 7 shows Figures 16 and 17, representing the bedroom environment. Situated away from the
possibility of direct sunlight and away from direct sources of natural light. The device was also placed
on a bedside table, a situation which reflects possible real-world conditions. The ALS recording test
was performed without the use of any artificial light sources.

Table 7: Bedroom Environment
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Figure 18 represents the raw ALS data recordings from the bedroom environment. The lux data graph
demonstrates some of the issues with the experiment. ‘Data 8’ as shown below is an outlier. This
could be due to many reasons, as explained in section 3.5.2.
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Figure 18: Bedroom Measured light levels

5.1.1.1 Bedroom digital representation

Figure 19 below represents the extracted key signal features from the ALS data across multiple
datasets for the Bedroom environment. The 22 datasets that constitute the bedroom digital
representation are characterised by features such as the number of data points, the average light levels,
the variability in light levels shown in the data variance and standard deviation. The table also
represents the range of each data set and the skewness and kurtosis showing the distributions
asymmetry and its tail heaviness. These digital features are essential in allowing for the differentiation
of the different environments.

Figure 19: Bedroom Signal Features



5.1.2 Kitchen

Table 8 shows Figures 20 and 21, representing the kitchen environment. The device placement is
situated away from direct sunlight. The majority of the room’s different sources of natural light are
west-facing, meaning that during the time of the experiment, there was no direct sunlight giving a
more accurate representation of the ambient light. The ALS recording test was performed without the
use of artificial light sources.

Table 8: Kitchen Environment
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Figure 22 represents the raw ALS data recordings from the Kitchen environment. The graph is
characterised by days of low volatility and days with high volatility. As this experiment relied solely
on the use of natural light sources, then natural phenomena, such as clouds, could cause or exacerbate
the volatility within the data this is further explained in section 3.5.2
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Figure 22: Kitchen Measured Light Levels

5.1.2.1 Kitchen Digital representation

Figure 23 below presents the extracted signal features from the Kitchen ALS dataset. The 23 data sets
are each broken down and have their signal features shown. The number of overall data points, the
average across all light levels, and the data variability are presented. The table also presents other
statistical key features, such as kurtosis and skewness, which represent the asymmetry of the data and
its appearance. The differences in these features culminate in the ability to disguise between different
environments as the common factor all these statistics share would be the digital ‘fingerprint’ of the
kitchen environment.

Figure 23: Kitchen Signal Features



5.1.3 Landing

Table 9 shows Figures 24 and 25 representing the outline of the Landing environment. This
environment is characterised by only one avenue of natural light. However, the same issue of some
days having more variation due to variable natural light conditions still persists. Also, of note that the
light source is north-west facing meaning there was no direct sunlight due to the time of the
experiment.

Table 9: Landing Environment
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Figure 26 represents the raw ALS data recordings from the landing environment. This figure has two
obvious visual characteristics. The first being that of the more uniform datasets, which are
characterised by long periods of low variance. These data sets are most likely to be caused by days in
which there was constant thick cloud cover, as the lux values are also comparably low. The second is
that some data sets have high volatility, meaning that the natural light levels changed, mainly due to
clouds. This is seen by the brief periods of reduced lux measurements, with other possible causes
being outlined in Section 3.5.2.
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Figure 26: Landing Measured Light Levels
5.1.3.1 Landing Digital representation

Figure 27 shows the extracted key features across the 23 individual datasets from the Landing
environment. With each dataset having multiple key signatures extrapolated from it. For example, the
figure shows general features such as the number of data points and the maximum and minimum light
levels. It also shows more advanced features such as the standard deviation present within the data
itself as well as statistical averages and phenomena such as kurtosis and skewness.

Figure 27: Landing Signal Features



5.1.4 Living Room

Table 10 shows figures 28 and 29, representing the Living Room environment and the location of its
natural light sources The ALS recording smartphone was placed in the centre of the room with no
obstructions around it to give it as accurate a reading as possible. The ALS test was also performed
without any artificial light sources.

Table 10: Living Room Environment
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Figure 29: Living Room




Figure 30 represents the raw ALS data recording for the Living Room environment. This figure is
characterised by data sets which contain very low volatility and are stable, which indicate little change
in the light levels of the environment. And some datasets that contain high levels of volatility. This
could be due to sunny days. However, data 1 contains anomalously high lux values. This could be due
to any number of reasons, for example, unforeseen reflections causing an increase in ambient light in
the environment. Further possible reasons are outlined in section 3.5.2.
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Figure 30: Living room Measured Light Levels
5.1.4.1 Living room Digital representation

Figure 31 below showcases the extracted signal features from the Living room ALS dataset. In the
Living Room environment, there are 23 datasets taken, representing 23 different days of recording.
There are a number of different key features extracted from each data set. These include the number
of data points, the average across the data points, its range with its maximum and minimum values
along with each dataset's skewness, kurtosis and variance. These values ultimately provide the unique
signature for the room.

Figure 31: Living Room signal Features



5.1.5 Outside

Table 11 shows figures 32 and 33 representing the Outside environment. This environment is different
to the other indoor locations, in that it has no shelter from direct sunlight or atmospheric interference.
The device is situated away from any obstructions or buildings that could interfere with the ALS
reading. The possibility exists for the device to be covered during the later hours of the day by the
westerly located house. However, the fact that the recording was performed at midday this risk is
negated.

Table 11: Outside Environment
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Figure 33: Outside




Figure 34 represents the raw Outside ALS data recordings. Whilst it shares some similarities with the
other indoor data sets, in that some datasets are defined by either high or low volatility, the lux
readings are in the thousands. This is directly due to the lack of cover that the ALS recording device
has when situated outside. Atmospheric phenomena such as clouds can also be seen in the data
through dips in lux values. Whilst the main reason for this is likely to be clouds there could be other
phenomena such as objects covering the device. It is also of note that recordings have taken place
whilst there has been rain, therefore which could also cause volatility, further limitations and
reasonings as to why the data is as it is are outlined in section 3.5.2.
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Figure 34: Outside Measured Light Levels
5.1.5.1 Outside Digital representation

Figure 35 shows the extracted key signal features of the Outside ALS dataset. It consists of 21
different data sets, with each dataset having the key features extrapolated. For example, the figure
shows the number of data points, the averages of the data, its minimum and maximum and therefore
its range as well as statistical descriptions of the data through kurtosis and skewness of the data.
Compared to the other indoor datasets the resolution is much higher as seen by the increased number
of data points. This is due to direct sunlight interacting with the device. As the ALS device uses a non-
uniform recording structure and only records on sensor change, a reason for this could be due to the
fact that as the sunlight enters the earth's atmosphere it undergoes atmospheric scattering where
photos are scattered by particles in the atmosphere leading to a non-stable stream of photons. Causing
more data points to be generated.

Figure 35: Outside Digital Representation



5.2 Classification Models

This section outlines the various machine learning classification models that were applied to the ALS
dataset, with a guise to determine the effectiveness of various classification models in differentiating
between the different locations. The particularities of each model are explained below and how
successful they are in identifying the unique room fingerprints.

5.2.1 J48
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5.2.2 Naive Bayes
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5.2.3 Logistic Regression
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5.2.4 Other Classification Models

As well as the classification algorithms, J48, Naive Bayes and Logistic Regression, a number of other
classification models were attempted. Table 12 shows the rest of the ones that were experimented on.
It is also of note that certain classification models were attempted which were completely unsuited,
these being, Multilayer Perceptron, AdaBoostM1, ZeroR, OneR, and Decision Table.

Table 12: Machine Learning Classification Results

Learning Algorithm Name Results | Results (Outside omitted)
J48 59 21
Naive Bayes 62 30
SMO 57 26
1Bk 50 13
Random Forest 53 12
Logistic Regression 62 27
Multilayer Perceptron (Error) | 58 20
RepTree 53 12
BaynesNet 49 8
AdaBoostM1(Error) 61 32
Bagging 53 12
Stacking 48 25
ZeroR(Error) 58 25
OneR 0 3
PART 58 18
Decision Table 0 3

It is also important to note that some classification models were tested that were completely unsuited
to the task. As shown in Table 12



Chapter 6: Discussion

In this section, the research aims and objectives will be systematically addressed and discussed. The
discussion will outline and evaluate how each objective was met, the significance of the findings
found in Chapter 5, and explore the implications of the results in the context of the existing research
literature around localisation with light sensors. furthermore, this chapter will outline and
acknowledge the limitations of the dissertation and make research recommendations for future work.

6.1 Research Objectives and Key Findings

Referring to the research aims and objectives specified in section 1.1.1, this discussion section will
evaluate how each point has been answered and how the significance behind each objective to the
context of the research question “How can smartphone ambient light sensors (ALS) be exploited to
infer environmental information and what measures can be taken to mitigate the potential privacy and
security risks?”

The first objective, to conduct a literature review to understand the current state of research
surrounding ambient light sensors and the security and privacy concerns, along with the implications
of PII environmental inference and personal security has been met as the literature review in 2.6
provides a solid foundation for the research conducted on this dissertation. Light-based related works
highlighted the issues with innate Android security systems and the potential for information inference
attacks on a user. The literature review also allowed for gaps in the existing research base to be
identified and for this dissertation to be put into context with the existing light literature.

The second objective, to design and develop an Android application to collect the smartphone’s ALS
data has been met as this dissertation demonstrated in section 4.2 that an application recording
ambient light from a smartphone’s ALS is possible. The significance of this is that it highlights that
this readily available data can be collected without a user’s express consent or knowledge. Which
could be used potentially by a malicious actor for nefarious purposes.

The third objective, to utilise Google Colab to present and format captured ambient light sensor data
has been met, as shown in Chapter 5, the environmental lux visualisations enable a clear visual
overview of each environment. The significance of this data visualisation is that it allows for
preliminary data analysis by identifying trends and anomalies to show the distinctiveness of each
environment. For example, through the use of visual representations, inside and outside locations can
be determined, thus demonstrating that at a basic level, with basic data visualisation location inference
is possible.

The fourth objective, to test in different common household locations, such as rooms and outside
environments was met as in section 5.1, five locations, four inside and one outside location were
presented. This provided a basis to test out the case presented by the research question. The outside
location was chosen to allow for the comparison of indoor and outdoor paradigms.

The fifth objective, to investigate the risk around how a malicious actor would be able to exploit the
vulnerabilities of ALS to violate PII was met in section 2.6. Where related research highlights that
while to some degree having access to the ALS data could give a malicious actor access to PII, the
real risk comes from the combination of data from multiple sensors. Such as accelerometers and
gyroscopes for indoor localisation. These findings were significant as they show the risk and impact
of seemingly innocuous information.

The sixth objective is to assess and evaluate how effective the security measures surrounding mobile
ambient light sensors are. This objective was met in Chapter 2, where the Android security model is



outlined and how certain elements such as access control and permission settings provide a baseline
security level. However, this has been found to be inadequate to mitigate the risks associated with
ALS data. The significance of this is that the research highlights the need for more robust security
practices that address indirect information leakage attacks such as those described in section 2.2.1.

The seventh objective, to propose possible solutions and risk mitigation strategies to address any
ineffective ambient light sensor security measures was partially met in section 2.4. This dissertation
described common attacks that ALS are susceptible to and provided mitigation strategies and
solutions, including the implementation of stronger Android security frameworks through granular
access controls. The significance of this is that while mitigation strategies do exist that have not been
employed in the standard Android stack, possibly due to their pros and cons. Third-party developers
such as OEMs are able to implement these described systems to mitigate these risks.

6.2 Limitations

While this dissertation has been successful in answering and achieving the stated research objectives
and has provided insight into locational inference of ALS, there are several overarching limitations
that must be addressed, that impact the certainty and quality of the answer to the research question.
These constraints stem from the aforementioned limitations discussed in section 3.5.2.

The short time span of the sample data at seven minutes per day per environment is insufficient to
provide enough differentiation between environmental datasets and account for environmental
interference. This highlights the fact that the results might differ depending on the time of day, or time
of year, which should be accounted for. Furthermore, as only one device was used for data collection
this project does not attempt to account for hardware irregularities that could give differing results.

As each environment was set up to not include any artificial lighting and the location of the
smartphone device was positioned so that it would be the most optimal in terms of light, this does not
reflect real-world scenarios. For example, the devices were placed stationary where in a real-world
situation the device could be moving around, or placed in direct sunlight.

The android sensor manager API only exposes the lux value, even on RGB-enabled devices, meaning
that the reduced dimensionality of the data would affect a dataset’s “‘uniqueness’. It also removes the
avenue for more advanced analysis techniques such as colour spectroscopy.

While machine learning was tested on the dataset, the limited dimensionality and sample size
increased the risk of overfitting giving less than ideal results. one of the reasons that the ML was poor
is that there was a lack of variability in the data hence features could not be identified. This lack of
variability can be measured by calculating the entropy [245] in a sample. If the entropy is too low it is
unlikely that a feature that can identify the case can be found. Calculating Entropy and using an
entropy threshold could be used as a test to see if sufficient data has been collected in a similar
manner to the data saturation concept [246]in qualitative analysis. Figure 55 shows preliminary work
into the entropy of the ALS dataset to highlight a cause for the disparity between the inside and
outside environments.

This project also could have explored machine learning elements such as hyperparameters to fine-tune
classification models to give better results.

Overall, these limitations hinder the effectiveness of the results that answer the research question.
While at a basic level of differentiating between indoors and outdoors is possible at this level of
analysis further work is needed for inter-room classification.



6.3 Summary

In summary, the recommendations for future work that have been outlined above provide a substantial
response to the limitations present within this dissertation. By making data collection periods longer,
increasing dimensionality within the ALS data, and applying well-configured machine learning
classification algorithms can help broaden the general understanding of ALS data in mobile devices.
Whilst contributing to a more security and privacy-aware Android sensor environment, meaning that
users would be able to enjoy the full functionalities of their devices without compromising PII, and if
not possible then give users a better understanding of the risks associated with location inference.



Chapter 7: Conclusion

In this chapter, the research question “How can smartphone ambient light sensors (ALS) be exploited
to infer environmental information and what measures can be taken to mitigate the potential privacy
and security risks” is answered.

Based on the results in Chapter 5 and the analysis of the findings that have been conducted throughout
this dissertation. Work in this project has shown that at least to some degree ALS data can be used to
perform inference attacks to perform environmental localisation and in turn violate the user’s PII. As
the data from the ALS system is usually considered innocuous, android allows for the light sensor to
be permissionless. Meaning inference attacks can be carried out without the user’s knowledge.

However, while it has been shown that differentiating between indoor and outdoor environments is
easily achieved, this project's limitations of short data collection periods, device-specific hardware
variations, and controlled environments affect the results in a real-world situation. Especially when
performing analysis against multiple indoor environments due to their homogeneity.

The analysis performed in this dissertation has also highlighted gaps in the current security measures
that surround ALS data. While the Android Security model provides protections, they are not
sufficient in mitigating cyber-attacks, inference attacks especially. As a response, this project
recommends some mitigation strategies and frameworks that could be implemented to reduce the
overall Android attack surface. For example, implementing more granular access-based controls
within the Android ecosystem as a whole.

7.1 Future work

Based on the results and the limitations present within this dissertation, there are several
recommendations that can be made for future works.

7.1.1 Extended recording periods and Environments

As outlined in section 6.2, one of the issues present within this project is that the seven-minute data
collection period is insufficient to remove the influence of external temporary anomalies. While these
anomalies technically do contribute to the ambient light of an environment, phenomena such as cloud
cover can occur well beyond the seven-minute recording period. Meaning that it could be possible
that for that time period, the ambient light was not an accurate representation of the actual ambient
light of the room. Any future work should consider recording over extended periods of time to
encompass different times of the day, different seasons and varying weather conditions. Having an
extended body of data to collect from would help negate the influence of anomalous environmental
phenomena.

Another point to consider is that while the chosen environments represent a domestic setting, future
work could encompass other real-world environments such as public transport, commercial buildings
and other outdoor environments such as woods or forests. By taking this more complex approach a
clearer understanding of the impacts and limitations of locational inference would become clearer.



7.1.2 Multi-dimensional data

Just as previous work mentioned in section 2.6, shows that the combinations of different sensors
create a wider attack surface in which more useful information could be utilised. Another related
potential is that of RGB ALS, in which red green and blue sensors could be used to provide increased
dimensionality to the dataset. However, as outlined in section 3.5.2, android security policies reduce
functionality via the SensorManager API. The possibility for distinguishing between different types of
light also becomes possible depending on individual device specifications.

7.1.3 Expanded Machine Learning Analysis

Another possible avenue for improvement or continuation is that of the data analysis. As described in
section 6.2, preliminary data analysis was performed using the aforementioned classification
algorithms on the ASL datasets. While this basic research provided some valuable insights, there does
remain a significant potential for future work surrounding machine learning analysis.

Advanced machine learning techniques and practises should be applied to the ALS datasets in order to
gain more insight and achieve a higher general positive accuracy score on the classification models.
As mentioned before one of these avenues could be through the use of hyperparameter optimisation or
through ensemble learning approaches. Another route for future work in machine learning
classification could be the use of deep learning techniques to employ neural networks to perform data
classification to a higher level of accuracy. However, these techniques often require larger sample
sizes, which is an issue this project suffers from.
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