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Executive Summary

Secure multiparty computation (MPC) as a subfield of cryptography has existed
for just under 40 years. In essence, a secure multiparty computation protocol
is executed by two or more parties who wish to jointly compute the output of
an arbitrary function, without sacrificing the privacy of their respective inputs.
Initially, MPC was branded as a purely theoretical concept, however since the late
2000s, it has been used to solve a myriad of real-world problems. As the adoption
of MPC continues to increases within everyday applications, it is now essential
for information security practitioners to be aware of the fundamental concepts
underpinning its functionality.

In the first half of this report, we aim to provide a thorough overview of secure
multiparty computation, ranging from the mathematical primitives that are com-
monly used to construct MPC protocols, to the current and future applications
of MPC as a whole. With a view to appeal to an audience with a wide range
of mathematical abilities, we have included detailed examples and explanations
throughout.

In the second half of this report, we apply our newly attained knowledge to a
particular application of MPC, namely threshold signature schemes, and their
potential application within digital asset self-custody solutions. Our main focus
in relation to this is a state-of-the-art threshold Schnorr signature scheme known
as FROST, which we deconstruct with the aim of not only providing a detailed
summary of its operation, but further how its goals are achieved through the use
of secure multiparty computation. FROST is a relatively new threshold signature
scheme, having only been introduced by Komlo et al. in December 2020. As
such, it is yet to be implemented and utilised for any real-world applications.
Therefore, as a part of this report we have also produced a proof-of-concept Python
implementation and demonstration of FROST. Finally, we compare FROST to
three other mechanisms, including a multi-signature scheme known as MuSig2,
with a view to consider the benefits and drawbacks of utilising each in the context
of digital asset self-custody.
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1 Introduction

First concretely defined by Yao [1] in 1982, secure multiparty computation (MPC)
is a subfield of cryptography that aims to solve the following problem statement:

Assume that m participants, P, ..., P,,, each possess a private value x1, ..., 2,
respectively and wish to jointly compute the result of an arbitrary function,
f(xy,...,xy). Is this possible to achieve, without a mutually trusted

intermediary and without the need for any participant to ever reveal the value of
their individual input to the other participants?

This seemingly abstract concept is often illustrated in the literature with the so-
called millionaires’ problem, which was first stated and solved by Yao in [1]. The
millionaires’ problem can be seen as a special case of MPC involving only two
participants, each of whom are millionaires’, that wish to determine who is the
richest without either millionaire needing to disclosing their net-worth the other
and without outsourcing the computation to a third party. As time has gone on,
the defined goals of MPC have evolved to not only include the assurance of privacy
for participants inputs, but also four other main objectives, as defined by Lindell
and Pinkas [2]:

e Correctness — the result of the joint computation cannot be altered by any
adversary that wishes to subvert it.

e Guaranteed Output Delivery — an adversary must not be able to prevent
participants from receiving the result of the joint computation.

e Independence of inputs — participants must not be able to construct their
input to be dependent on the input of any other participants.

e Fairness — in the presence of an adversary, either all or none of the partici-
pants receive the result of the joint computation.

Secure multiparty computation is a powerful concept in the sense that it has been
shown by Goldreich et al. [3] that any arbitrary function can be securely computed,
however progress towards the application of MPC with the aim of solving real-
world problems stalled for many decades due to the inefficiency of the solutions
that were initially proposed.

1.1 Motivation & Objectives

It was not until the turn of the 21st century that MPC matured to become an
efficient tool that could be utilised for practical purposes. Indeed, in November
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2019, a consortium of businesses known as the MPC Alliance was formed, with the
intention of raising awareness and adoption of MPC across various industries, and
saw a 3x increase in membership over its first year of operation [4]. Given this, it is
clear there is now a greater interest in MPC and its possible applications than we
have ever previously seen, and as a result, academic literature on the subject has
grown substantially. However, much of this literature is either overly mathematical
in nature or excessively abstract due to a lack of mathematical detail. In both
cases, this hinders the comprehension of the average reader. As such, the first
half of this report seeks to find a balance between the two approaches commonly
found in the literature, acting as a well-rounded overview of MPC that includes
both a technical review of the mathematical techniques that are used to achieve
the objectives of MPC, but also a summary of the notable real-world applications
that utilise them. To supplement this, we will include concrete examples where
appropriate, to illustrate that the mathematical techniques do indeed achieve their
intended goals. Again, this is an aspect that is not frequently included in the
literature.

In essence, our intention in the first half of the report is to provide the reader
with an appreciation of the big picture in relation to the underlying mathematical
construction of MPC and how MPC in general can be applied to a wide variety
of real-world problems. In contrast, the second half of this report delves deeper
into a specific application of MPC, namely threshold signature schemes. Our
aim in this section is to first introduce the reader to threshold signatures, how
they differ from traditional signature schemes and to describe the operation of
a commercial implementation of a threshold signature scheme that is used to
facilitate the custody of digital assets (in particular, Bitcoin). We then aim to
explore a state-of-the-art threshold variant of the Schnorr signature scheme known
as FROST, with a view to explain in detail how it achieves the objectives of
secure multiparty computation — an aspect not considered in the original paper
[5]. To reinforce the reader’s understanding of FROST, we also aim to produce
a proof-of-concept Python implementation of the scheme and a demonstration of
its use. Our final objective is to consider the potential application of FROST to
Bitcoin transactions and custody, with a view to analyse and discuss alternative
mechanisms with similar properties.

1.2 Structure

This report is comprised of four further sections. In section two, we will begin
by introducing the reader to the core concepts and fundamental mathematical
primitives required to achieve MPC, including oblivious transfer, garbled circuits
and three forms of secret sharing. In section three, we then move on to describe,
at a relatively high level, two current commerical applications of MPC in the
realm of privacy preserving auctions and privacy preserving analytics. Following
this, we briefly present three potential future applications of MPC currently being
investigated within academia. Section four — the last section within the main body
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of this report — takes a deep-dive into threshold signatures, with emphasis on the
FROST signature scheme, including a proof-of-concept Python implementation
and a discussion of alternative mechanisms. Finally, we make some concluding
remarks in section five.



2 Preliminaries

Secure computation is a broad subfield of cryptography, involving many unique
concepts and mathematical tools. As such, this section is designed to familiarise
the reader with the most fundamental concepts in secure computation, including
the models used describe potential attacks against an MPC protocol, the common
mathematical techniques used to achieve the goals of MPC.

2.1 Security Models

Similar to any other cryptographic protocol, an MPC protocol must incorporate
robust countermeasures to ensure that any entity that wishes to subvert the goals
of the protocol (as described in Section 1) does not succeed. What differenti-
ates MPC protocols from other cryptographic protocols, however, is that entities
that participate must be equally wary of the ulterior motives possessed by other
authorised participants, not just adversaries external to the protocol execution
that possess malicious intentions. MPC participants with these characteristics are
commonly known as corrupted parties, each of which are categorised widely in the
literature [6, 7] by their propensity to subvert the protocol:

e A semi-honest (or, honest-but-curious) participant follows the protocol ex-
actly as specified, without deviation. However, they will attempt to analyse
the messages exchanged between themselves and other parties with a view
to subvert its goals, such as the privacy of other participants inputs. An
MPC protocol is said to offer passive security if it can withstand attack
from semi-honest participants.

e A malicious participant, on the other hand, uses any means available to
them to to subvert the protocol. This includes deviating from the protocol
specification in an arbitrary fashion, to the extent that the corrupt party may
simply choose to cease communication during execution. An MPC protocol
is said to offer active security if it can withstand attack from malicious
participants.

e Finally, for sake of completeness, an honest party is a non-corrupt party.
In other words, an honest party is a party that wishes to participate in the
protocol, without any desire to do subvert the goals of the protocol.
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2.2 Mathematical Primitives

2.2.1 Oblivious Transfer

Oblivious transfer is a cryptographic protocol that describes the transmission of
information between two parties, a sender and recipient, whilst ensuring the fol-
lowing properties of the exchange are satisfied:

e Assuming the sender is in possession of two distinct pieces of information,
1 and x5, the recipient must only obtain a single piece of information, x;,
from the sender. In particular, this x; must be nothing but the information
that was requested by the recipient.

e The sender cannot be certain which piece of information has been obtained
by the recipient during the transfer. In other words, the sender remains
oblivious to which z; they have sent to the recipient.

This definition differs somewhat to the definition of oblivious transfer first pro-
posed by Michael O. Rabin in [8]. In his paper, Rabin describes a protocol that
involves the transfer of a single of piece of information, which the sender knowns
has been requested by the recipient, and is designed to ensure that the recipient
either receives the requested information, or nothing at all, both with a probabil-
ity of 1/2. In Rabin’s protocol, the sender has no way of knowing the outcome of
this transfer — i.e., the sender does not know whether the recipient obtained the
requested information or not. Instead, our definition follows what is known as a
1-out-of-2 (or 1-2) oblivious transfer protocol, that was first defined by Even et
al. in [9]. This protocol was then generalised by Brassard et al. in [10] to what
is known as a 1-out-of-n oblivious transfer, however, in this report we will only
summarise 1-out-of-2 oblivious transfer.

To execute a 1-out-of-2 oblivious transfer protocol, as defined by Even et al. two
parties P, and P,, must first agree which underlying public-key cryptosystem
to utilise. The protocol defined in [9] is written in generic notation to allow the
participants to use, in theory, any public-key cryptosystem (PKCS) of their choice.
Therefore, assuming that P; and P, have agreed to utilise the RSA cryptosystem
(which is in fact the suggested PKCS in [9]), P; can execute an oblivious transfer
to P, involving two units of information, x; and x, as follows:

1. P, generates a fresh RSA modulus n, encryption exponent e and decryption
exponent d. As per textbook RSA, P, must keep d private and send their
public key (n,e) to P,.

2. P, randomly generates and sends P, two values, 1y # v, such that:

Yo, Y1 < {0,1,2,...,71—1}.

b}
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3. P, picks a value ¢ € {0, 1}, representing the unit of information z. they wish
to request from P;. Then, P, must generate a random k € {0,1,2,...,n—1}
and send the following to Pi:

z2=vy.+k° (mod n)

4. Py must generate and send two values, z(, = xo+ko (mod n) and 2} = z1+k;
(mod n) to P, where:

5. P can obtain their requested information by calculating z. = z/.—k (mod n).

We can show that the two required properties from the definition of oblivious
transfer are achieved. First, P, is able to obtain their requested information
because:

—k=z.+k —k

=z, 4+ (z—y)" —k

= 2o+ (ye + K —yo) — k
=2, + k% —k
=x.+k—Fk

= Z..

However, P, is not able to reveal the information they did not request (i.e., 1_).
This can be shown by attempting the same method as above with the aim of
obtaining xy_.:

T —k=x1_.+k_.—k
=21+ (2 — yl—c)d —k
=21t etk —pno) —k
# T e

The inequality holds because y and y; are generated by P; such that yo # ;.

6
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Furthermore, P; is unable to determine with certainty which piece of information,
z., was requested by P,. This is because the random value y. that corresponds to
the requested information, x., is concealed by introducing the k¢ modulo n term,
for a secret value, k, generated by P,. This is best illustrated with an example —
assume P defines an RSA public key, (n,e) = (55,3). Then, assume that P, sets
Yo = 7 and y; = 12, and recieves z = 4 from P,. If P; believes that P, has chosen
¢ = 0, P, must solve the following for k:

7+k* =4 (mod 55)

This yields k£ = 13 (mod 55). However, P; could alternatively believe that P, has
chosen ¢ = 1. Applying the same logic as above, this would mean that £ = 53
(mod 55). Therefore, there are two values of & (mod 55) for which z = 4, meaning
both possible values of ¢ have equal probability of being the actual value chosen
by P,. As such, if P, never reveals k, the value of ¢ cannot be determined with
certainty by P;. At first, oblivious transfer may appear to bear no relation to secure
multiparty computation, however this will become clear in the next subsection.

2.2.2 Garbled Circuits

The concept of garbled circuits and their application to secure two-party com-
putation is attributed to Andrew Yao, who first discussed the idea in an oral
presentation of one of his papers [11]. Although Goldreich et al. were the first
to publish a written description of the concept in [3], Goldreich himself has since
given credit to Yao in [12] for first describing what he calls scrambled circuits — an
alternate name for garbled circuits. The more common name for the technique,
garbled circuits, was first coined by Beaver et al. in [13].

As primitives of secure computation, garbled circuits and oblivious transfer dif-
fer somewhat. Neither an oblivious transfer protocol nor a garbled circuit can
alone be used to facilitate secure computation. Instead, Yao’s garbled circuit pro-
tocol facilitates secure two-party computation of a predefined function, but the
efficacy of such a protocol requires on an underlying oblivious transfer protocol.
We will now describe a simplified version of Yao’s garbled circuit protocol that
can achieve passively secure two-party secure computation, based on recent work
by Lindell and Pinkas [14], which is cited as the first formal proof of security of
Yao’s protocol. An example function will be included in this description, to aid in
reader comprehension, and the description will also be followed by an explanation
as to how this protocol achieves the goal of input privacy as required by secure
multiparty computation.

Assume two parties, P; and P, both possess a private input,  and y respectively,
and wish to jointly compute the output of the function z = f(x,y) without reveal-

7
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ing their private inputs to each other at any time during the computation. Yao’s
garbled circuit protocol is able to facilitate this in the following set of steps:

1. P, must first construct a boolean circuit representation of the function, f.
A boolean (or binary) circuit is simply a representation of the function f
using logic gates, connected by wires that carry the input and output bits of
the function. The logic gates that could comprise a boolean circuit include
— but are not limited to — AND (A), OR (V) and XOR (@) gates and their
logical compliments. This is in contrast to an arithmetic circuit, which is
also comprised of gates and wires, however in an arithmetic circuit these
gates perform arithmetic operations (e.g., addition and multiplication), and
the wires carry arbitrary field elements as inputs and outputs, instead of
bits. For sake of simplicity, we will assume that f can be described by a
single XOR gate — that is, f(z,y) = x @ y, where both x and y represent a
single bit input from P; and P; respectively. However in reality, many more
interconnected gates would be required to represent a complex function as
a boolean circuit. A boolean circuit can, in turn, be represented in the form
of a circuit diagram containing logic gates, each of which accept two inputs
and one output, known as wires. Figure 2.1 shows the circuit diagram for
f(z,y), where w, and w, represent the wires that will be used to accept the
input to the XOR gate for P, and P, respectively. Further, w, represents
the output wire of the XOR gate.

Wy
wy W
Figure 2.1: XOR Gate.
To evaluate a boolean circuit, a truth table can be constructed, as seen in

Table 2.1. This table represents all possible input combinations across both
input wires, w, and w,, and the resultant output on w..

Wy | Wy | W,
0 010
0 1 1
1 0 1
1 1 0

Table 2.1: Truth table representation of f(z,y) =z @y = wi @ ws.

2. Py must then garble the boolean representation of f that was produced in the
previous step. To garble a circuit, P, must first generate two random cryp-
tographic keys for each wire present in the boolean circuit. In our case, the
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Value | 0 | 1 Value | 0 | 1 Value | 0 | 1
Label | k% | k¥ Label | k§ | k{ Label | kf | Kk}

Table 2.2: Wire value to label / key correspondence.

boolean circuit for f contains only three wires, therefore six cryptographic
keys must be generated. These keys must be compatible with a symmetric
key encryption algorithm, E, that was agreed between P, and P, before a
run of the protocol. The choice of E is important, but will be discussed
after this protocol description. Each wire is then assigned two keys (often
known as labels), one which will represent the value 0, and one to represent
the value 1, as seen in Figure 2.2. For example, £ and kf represent the keys
generated to represent the bits 0 and 1 respectively, when sent over input
wire w,. A similar value-to-label correspondence is also performed for w,

and w,.
( (:)Ev k%) z z
(kY. &) . ki)

Figure 2.2: XOR Gate using labels.

This value to key correspondence is stored and kept secret by P; in a form
similar to what can be seen in Table 2.2. P; must then replace the values in
Table 2.1 using this value-to-label correspondence, the result of which can
be seen in Table 2.3.

Wy | Wy | W,
k§ | ko | kg
ke | kY| ks
ki | ko | ki
ki | kY| kS

Table 2.3: Truth table representation of f(z,y) using labels.

In this form, the truth table can now be garbled by P;. To do so, P, must
perform a double-encryption on each of the four possible output labels for
w,. This process requires two encryption keys, which can be retrieved from
each input wire column of the corresponding row in the truth table. The
output of this process can be seen in Table 2.4.
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Wy wy Wy E’wz (Ewy (wz))
ko | Ko | ko | Eig(Epy(K5))
ko | ki | KT | Ekg(Epy (ki)
ki | ko | KT | Bk (B (k7))
Ry | K| R | By (Epy (K5))

Table 2.4: Garbled truth table representation of f(z,y).

The final step of the garbling process requires P; to randomly permute the
encrypted column of the garbled truth table. As a result, P; will be left
with a table similar (but not necessarily an exact match) to Table 2.5. This
is performed to ensure that when this table is received by P, they will be
unable to determine the real output value by simply comparing rows in the
garbled truth table to a standard XOR truth table, such as Table 2.1.

S

I3
™
g

PRy

N
—8 O8 =& O8

Table 2.5: Garbled truth table representation of the output of f(z,vy).

P, must then send Table 2.5 to P; in preparation for the computation phase.
Again, if f(x,y) was a more complex function, P; would have to send a
garbled truth table for each gate in the circuit. Further, P; must also send
the labels that represent their choice of input to the function. This is either
one of two values, ki or ki that will be sent over w,. In our example, we
assume that P; chooses k.

3. Once P, has received the garbled output seen in Table 2.5 and P;’s choice
of input, P must choose an input for wire w,. However, because P, has
kept the value-to-label correspondence secret, P, does not know what label
corresponds to their desired input. This is where 1-out-of-2 oblivious transfer
is required, as described in Section 2.2.1. Assuming that P, chooses the
input value of 1, they will therefore obtain the label &7 from P; via oblivious
transfer.

4. Now that P, is in possession of two labels, each representing a participants
private input, they can evaluate the output of the function. To do so, P»
must refer to Table 2.5 that was received in the previous step, and decrypt
the value that has been double-encrypted with the labels in their possession.
In our case, P is in possession of k% and k{, therefore P, is able to decrypt

10
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Bz (B (k7)) and obtain kf. Again, Py is the only party in possession of the
value-to-label correspondence in Table 2.2, therefore P, must inform P; that
the output of the evaluation is ki, then P, will be able to map this label
back to an output value using Table 2.2 and reveal this to Ps.

It is not necessarily clear why Yao’s protocol ensures that both parties inputs
remain private from each other during this computation, therefore we will now
explain how this is achieved from the perspective of both participants:

e The crucial piece of information required to be kept secret to preserve the
privacy of the input of P; is the value-to-label correspondence in Table 2.2.
These labels are randomly chosen by P;, therefore when P; sends their choice
to P, (in our example, this is k%), P, has no method to determine which real
input value kf corresponds to without knowledge of Table 2.2.

e The input privacy of P, is achieved using oblivious transfer. As described in
Section 2.2.1, oblivious transfer allows P to retrieve the label correspond-
ing to their desired input, without P; learning which choice was taken and
further P, is not able to learn the label corresponding to the other choice
of input, which would allow them to decrypt more than one ciphertext from
Table 2.5.

Finally, we mentioned in step two of the protocol that the choice of encryption
algorithm was important. In step four of the protocol, P, is presented with Table
2.5, which from their perspective is simply a table containing four ciphertexts.
Therefore, even if P, uses the two label / keys to decrypt all ciphertexts, only
one resultant plaintext represents the output of the function. The other three
plaintext labels will be meaningless as the correct keys will not have be used during
the decryption, and P; will be unable to verify which label is the correct output
without access to the value-to-label correspondence in Table 2.2. Therefore, [14]
suggests that the encryption algorithm should have an efficiently verifiable range,
meaning P is able to efficiently verify which ciphertext is the result of a given key,
and therefore P; will be able to determine which decryption corresponds to the
correct output label of the function. However, as [14] notes, ensuring correctness
of output can also be achieved by other means, such as explicit but randomly
permuted indices, such as those used in [15].

2.2.3 Secret Sharing

The last primitive we discuss is secret sharing, first formalised by Shamir [16], but
also discovered concurrently by Blakley [17]. Broadly, this term and is used to
describe the act of distributing a secret value, S, between n individual parties,
Py, ..., P,, such that each party cannot recover S without knowledge of the values
(or shares) possessed by the other participants.

11
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2.2.3.1 Additive Secret Sharing

Although never explicitly defined in either [16] or [17], addition over a finite field
can be used as a rudimentary secret sharing scheme.

To construct an additive secret sharing scheme, a finite field must first be chosen.
This is commonly taken to be the field of integers modulo a prime p, which we will
denote F,. Now, say we wish to share a secret, S, between n parties, P, ..., P,,
the following set of steps must be performed:

1. Generate a random set of shares, {s1,...,S,-1}, such that s; € F,,.
2. Set s, = S — Z?:_ll 5;.

3. Distribute each share, s;, to the its respective owner, P;.

As a result, each party has now has a share of the secret, S. To recover S, all
parties must all disclose their respective shares s; to one another and subsequently
calculate S = Y"1 | s;. To illustrate this scheme, consider the following example,
where we share the secret S = 41 between n = 3 parties, having chosen the finite
field F,,, where p = 47 is prime. Then, we can share S as follows:

1. Generate {12,25} as a set of random values in Fy7. As such, s; = 12 and
SS9 = 25.

2. Let s3 =41 — 12— 25 =4 (mod 47)
3. Distribute s; = 12, s9 = 25 and s3 = 4 to each party respectively.

It is clear that to recover original secret, S, all parties must cooperate by revealing
their share to the other participants. Even in the event that a malicious party
obtains n — 1 individual shares, they still gain no advantage towards recovering S
in comparison to a party in possession of any other number of shares less than n.
Continuing the above example, say a malicious party knew both s; and sz, but
not so. Recovering S with certainty that it is the original secret is impossible, as
any guess made for s3 has equal likelihood of being correct, as it was generated

as a random value from F47;. To recover S, we can simply perform a sum of all
shares, S =12+ 25+ 4 =41 (mod 47).

2.2.3.2 Shamir Secret Sharing

In additive sharing schemes, such as the one described in Section 2.2.3.1, the
restriction that all parties must cooperate to recover S can have severe limitation
in certain contexts. For example, in the event that just one party is unable (or
even just refuses) to participate, S will not be recoverable. A more flexible sharing
scheme was introduced by Shamir in [16], known commonly as Shamir’s Secret
Sharing Scheme. Assuming that we again wish to share a secret S between n

12
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parties, this scheme is more powerful in the sense that it can be adapted to allow for
t < n participants to cooperate to recover S. More specifically, Shamir defines this
as a (t,n)-threshold sharing scheme, that is described by the following properties
[16]:

e Any party in possession of ¢ shares can recover S.

e However, any party in possession of m < t shares is unable to recover S.
Importantly, they are also unable to recover the remaining ¢ — m shares
necessary to do so in their own.

To generate shares of a secret, S, Shamir’s Secret Sharing Scheme requires the
creation of a random polynomial, which is defined by Cartesian coordinates that
represent shares of S. Recovering S requires the polynomial to be recovered via
interpolation. Polynomial interpolation relies on the well-known theorem that,
given n + 1 Cartesian points (with unique x-coordinates), there exists a unique
polynomial of degree at most n that contains all n+ 1 points [18]. In other words,
a polynomial of degree n requires at least n + 1 known coordinates in order for it
to be described sufficiently.

To utilise Shamir’s Secret Sharing (¢, n)-threshold Scheme, we must first pick a
finite field, such as IF, for prime p, that our operations will be performed over.
Then to share a secret, S, we perform the following as defined by Shamir [16]:

1. Generate a set of t — 1 random values, {ay,...,a;—1}, such that a; € F,.
These will be coefficients of our polynomial. Furthermore, set ag = S.

2. Let f(z) = Y-} a’.

3. Next, construct a set of n shares, {s1,...,s,}, such that s; = (i, f(7)), for
every i € {1,...,n}.

4. Distribute each share s; to the i-th party respectively. The polynomial f(x)
and its corresponding coefficients should be discarded.

As f(z) is a degree t — 1 polynomial, it can be recovered with at least ¢ points
from {si1,...,s,} via interpolation, using an algorithm of choice. Given f, the
secret S can then be recovered by setting S = f(0). A popular method to recover
f is using Lagrange interpolation, which was first devised by Edward Waring [19].
The recovery of S using Lagrange interpolation is possible as follows, given any
subset of at least ¢ shares from {sy, ss,...,s,}. Assuming that T is a set of the
indices of the shares available to be used for recovery, then:

1. The function, f, can be reconstructed by setting f(x) = >, ., i \i(z), where
y; is the y-coordinate of s; = (i, f(i)) and \;(x) is the Lagrange coefficient
defined in our case as follows:
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2. The secret, S, can then be recovered by setting S = f(0).

Any party with fewer than ¢ shares cannot recover f(x) and therefore S. This is
because fewer than ¢ points do not represent a ¢ — 1 degree polynomial uniquely.
As Shamir notes in [16], this therefore means there are some [ > 1 polynomials
that are described by these points, all of which have equal probability of defining
f(x), as {ai,...,a,_1} is generated randomly.

To further illustrate this, consider the following example. Say we again wish to
share the secret S = 41 between three parties, where any two can cooperate to
recover S, independently from the other party. We choose our finite field to be Fy;
and perform the following to construct our shares using the Shamir Secret Sharing
Scheme with a (¢ = 2,n = 3)-threshold:

1. Generate a set containing random values in F7 to represent our coefficients.
Here we generate {33}, a set containing only a single value as our scheme
has a threshold of two. Set ag = 41.

2. Let f(z) = 312} ajr’ = 41 + 33z

3. Pick 1 = 1, 23 = 2 and x5 = 3. Therefore s; = (1, f(1)) = (1,74) = (1,27)
(mod 47). Similarly, so = (2,13) (mod 47) and s3 = (3,46) (mod 47).

4. Distribute shares sq, s and s3 to each party respectively.

We can illustrate the recovery of S using only two shares and Lagrange interpo-
lation, as defined earlier. Assuming a participant has obtained the shares sy and
s3, which means 7' = {2, 3}, therefore:

flx) =13-

5 3 3o

Therefore, we can recover S by setting x = 0:

0-3 0—2

Unlike garbled circuits, which were introduced by Yao for the explicit purpose of
facilitating secure multiparty computation, it not immediately clear how secret
sharing can be used to achieve the same goal. As such, the following example will

14
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demonstrate how Shamir Secret Sharing! can be used by three parties, Py, P, and
P to jointly compute the function f(z,y,2) = x + y + z, whilst maintaining the
privacy of their individual inputs x,y and z respectively. This concrete example
is based on the general algorithm outlined by Smart in [20].

Assume that P;, P, and P3; wish to contribute x = 41, y = 3, z = 18 to the
function F(x,y, z) respectively. This can be jointly computed in a manner that
maintains the privacy of each participants inputs as follows:

1. Each participant P, P, and P3 generates shares of their private input using
the general Shamir Secret Sharing algorithm described above (using their
own defined function). As a result, in our example, each party generates the
following shares (as before, we work in Fy7):

P: (1,27), (2,13), (3,46) — generated with f;(z) = 41 + 33z
Py: (1,14), (2,25), (3,36) — generated with fo(z) =3+ 11z
Ps: (1,43), (2,21), (3,46) — generated with f3(z) = 18 + 25z

2. Each participant, P;, securely sends the share (7, f;(j)) to participant P;
for j # 1 € {1,2,3} — that is, each participant sends a share to all other
participants and keeps one share for themselves. As a result, each participant
is in possession of the following shares:

Pp: (1,27), (1,14), (1,43)
Py (2,13), (2,25), (2,21)
Ps: (3,46), (3,36), (3,46)

3. Each participant can then compute the sum of the y-coordinates of each
share to obtain a Shamir share of the result of F'(41, 3,18) as follows:

Pi: sy =27+ 14+ 43 = 37 (mod 47)
Py: sy =134 25468 =12 (mod 47)
P3: 53 =46+ 36 + 46 = 34 (mod 47)

4. Now, because we have defined a (3,2)-threshold Shamir scheme, any two
participants are required to interact to recover the output of F'(41,3,18).
Assuming P; and P, send their share to each other, then they can each
use Lagrange interpolation to recover the output of the joint computation
without ever disclosing their input to the other participants:

0—-3 0—-2
12 —— 4. ——=1 4
2_3+3 - 5 (mod 47)

As required, this is exactly the same result as calculating F(z,y,z) = 41 + 3 +
18 = 15 (mod 47), without any participant having to reveal their individual input.

'Note that both additive secret sharing and verifiable secret sharing can also easily be used
to achieve secure multiparty computation in a similar manner.
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Notice in this example, we performed secure multiparty computation involving
three parties — this is not possible to achieve using garbled circuits as described in
Section 2.2.2. Secret sharing schemes can also support secure function evaluation
involving multiplication operations (e.g. a function such as f(z,y,2) = xyz),
however this is a slightly more involved process than that which is demonstrated
above. For a thorough description of this, see [20].

2.2.3.3 Verifiable Secret Sharing

Both Additive Secret Sharing and Shamir Secret Sharing rely heavily on two as-
sumptions to ensure correctness. First, both schemes require a trusted dealer to
distribute the shares of S. That is, all participants must trust that the dealer has
distributed shares in a valid manner, such that each share can indeed be used to
reconstruct S and is therefore not an arbitrary value that bears no mathematical
relationship to S. Furthermore, all participants must trust that all other partici-
pants have submitted valid shares during the reconstruction of S, and again, not
an arbitrary value that would cause the incorrect secret to be reconstructed.

To address these weaknesses, Chor et al. proposed what is known as Verifiable
Secret Sharing (VSS) in [21]. VSS allows a secret S to be shared between n parties,
such that the validity of each share received by a participant can verified, whether
this be the share assigned to them by the dealer, or the share of another participant
received during the reconstruction of S. A commonly known VSS scheme is defined
by Feldman [22], that is an adaption of the Shamir Secret Sharing Scheme.

To achieve this, Feldman’s scheme relies on the difficulty to compute the discrete
logarithm (DLP) within certain groups. That is, given a finite cyclic group, G,
with a generator g, and an element h € G, there is no efficient algorithm known
that can find an integer 0 < z < |G| such that ¢° = h. Here, |G| denotes the
order of GG, which is defined as the number of elements in G. Furthermore, ¢ is a
generator of G if all elements of the group can be written as a power of g (that is,
each element of GG can be obtained by repeatedly applying the group operation to
g). A popular group for this purpose (and one that is chosen by Feldman in [22])
is the finite cyclic group, Z;, which is the multiplicative group of integers modulo
a large prime, p. Given that all participants have agreed upon a group, Z; and
a generator, g, for this group, the Feldman VSS scheme can be used to share a
secret, S, as follows:

1. The dealer generates a set of ¢ — 1 random values, {ay,...,a;_1}, such that
a; € Z,. These will be coefficients of our polynomial. Furthermore, set
ap = S.

2. The dealer sets f(z) = >.\_, aa’.

3. The dealer constructs a set of n shares, {s,...,s,}, such that s; = (i, f(4)),
for every i € {1,...,n}.

4. The dealer distributes each share s; to the i-th party respectively.
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5. For every 0 < j <t — 1, the dealer also computes ¢; = g%, sending the
set C' = {¢o, ¢1,...,¢:—1} to all participants. The polynomial f(x) and its

corresponding coefficients should then be discarded.

6. Upon receipt of s;, each participant, P;, can verify their share of S by com-
puting v = ¢* and ensuring that the following equality holds:

-1
v = H ;"
=0

Clearly, the first four steps of Feldman’s VSS scheme are simply a Shamir Secret
Sharing of S, however the addition of step five and enables the share verification
process that takes place in step six. Each element of C' is a form of attestation
to each coefficient of the function, f, without actually revealing the true value of
said coefficients. This is possible due to the difficulty of the discrete logarithm
problem, as described earlier. The equality in step six then allows the participant,
P;, to verify their share because:

t—1
iJ 0 .1 52 it—1
v=]]¢" =6\ dh ... 00,
j=0

a1 asi’ ar_q1it71

=g"g .9
Yot

(4)

=g
:gsi

If the above equality does not hold, then P; can be sure that they have not received
a valid share of S = q¢ (and similarly the converse). A similar verification process
takes place during the reconstruction of the secret, S. In Feldman’s VSS scheme,
each P; participating in the reconstruction of S can verify the share, s, received
from P, by ensuring that the following equality holds:

t—1
Sk kj
g = H¢j
J=0

Once this equality has been verified for all shares required to reconstruct S, the
secret can be obtained as per the reconstruction process defined in Section 2.2.3.2.
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3 Applications & Implementations

In this section, we will introduce two of the most well-known real-world appli-
cations of MPC, namely privacy preserving auctions and privacy preserving ana-
lytics. For each application, we provide a high-level description of how the solu-
tion was achieved using the mathematical primitives of MPC described in Section
2.2. We then briefly describe three applications that could (potentially) be imple-
mented commercially in the near future.

3.1 Applications of the Present

3.1.1 Privacy Preserving Auctions

Arguably the most well-known commercial application of MPC was developed and
deployed in 2008, as a collaborative effort between SIMAP (a team of researchers
from the University of Aarhus), DKS (the alliance of Danish sugar beet farmers),
and Danisco (a Danish sugar production company) to facilitate a privacy preserv-
ing auction of sugar beets in Denmark [23]. This application was also the first
practical implementation of an MPC protocol designed with the explicit aim of
solving a real-world problem. A sugar beet is a crop grown by farmers for the
production of sugar, which is extracted from the roots of the plant and refined
before being distributed and sold. The MPC protocol proposed by Bogetoft et
al. (SIMAP) in [23] allowed the sugar beet farmers and Danisco to calculate the
market clearing price for the sale of sugar beets via a double auction, all while
preserving the privacy of the bids submitted by each farmer.

The protocol devised by Bogetoft et al. is relatively straightforward in construc-
tion, requiring only the use of a verifiable secret sharing scheme from [24], an
asymmetric encryption algorithm and a secure comparison protocol of their own
design. The implementation described in [23] involves a joint computation be-
tween three servers over a local area network, where each server was owned by
DKS, Danisco and SIMAP respectively. Each server receives a three-way Shamir
secret shared input (a buy or sell bid) from each farmer, from which the total
supply and demand at each price is calculated as a sum of all sell and buy bids at
each price respectively. Then, using a binary search between the list of buy and
the list of sell bids, the secure comparison function is used to calculate the list in-
dex (representing the unit price) where the difference between demand and supply
is closest to zero. This computation is equivalent to finding the market clearing
price of the sugar beet. Following the protocol description in [23], Bogetoft et al.
prove that the protocol is secure against semi-honest adversaries, a security model
that all cooperating parties agreed would be sufficient for their purposes.

The protocol of Bogetoft et al. achieves the principal objective of secure multi-
party computation because the three participants were able to jointly compute
the market clearing price of the sugar beet crop without the knowledge of the in-
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dividual bids received from each farmer, and without the need for a trusted third
party. As noted in [23], this was beneficial in two ways — first, using MPC allowed
farmers to participate in the auction, without needing to disclose their bids to
Danisco (which can be classed as sensitive information, because revealing these
could allow Danisco to infer a farmer’s financial situation). Secondly, the auction
could take place without having to hire a third party consultant, reducing the cost
to perform the auction for both DKS and Danisco.

Following on from this implementation, Partisia (a software solutions firm based
in Denmark [25]) was founded by SIMAP, who have gone on to integrate MPC
within a range of other products, including a privacy preserving survey platform
[26], and a privacy preserving alternative financial trading system [27].

3.1.2 Privacy Preserving Analytics

Another well-known commerical implementation of secure multiparty computation
is the Sharemind Framework [28], devised by Dan Bogdanov and Jan Willemson
from Cybernetica (an Estonia-based technology company [29]) and Sven Laur
from the University of Tartu. The Sharemind Framework differs from the work
by Bogetoft et al. described in Section 3.1.1, as it is not an MPC protocol de-
signed to address a specific real-world problem. Instead, it is runtime environ-
ment and programming language (named SecreC [30]) that allows developers to
create privacy-preserving data analysis applications, without the need for the de-
veloper to understand the details of the underlying protocols and mathematical
primitives. As outlined in [28], the operation of the Sharemind Framework is
underpinned by additive secret sharing over Zss> which was chosen for efficiency
reasons, as many modern 32-bit computers already implement integer arithmetic
modulo 232, The Sharemind framework initially supported addition and multipli-
cation over two secret shared values, along with greater-than-or-equal comparison
in the semi-honest security model, however it has been shown that extensions to
the original framework would also allow secure computation using Yao’s garbled
circuit protocol [31].

The Sharemind framework was first utilised to solve a real-world problem in 2011,
when Bogdanov, Talviste and Willemson from Cybernetica developed a privacy-
preserving application to analyse financial information for the members of the
Estonian Association of Information Technology and Telecommunications (known
as ITL) [32]. This allowed each member of ITL to compare financial indicators
such as annual labour costs, training costs and profit with all other I'TL members,
without the need to share this data with them directly. As a result, it meant that
the ITL members could reap the benefits of the analysis, while maintaining the
privacy of their sensitive information, and without the requirement of a trusted
third party (who may have abused their access rights to this information during
the analysis). Similar to the implementation by Bogetoft et al. described in Section
3.1.1, the secure computation in [32] was performed between three servers in pos-
session of Cybernetica, Microlink, and Zone Media respectively, all three of whom
are members of I'TL. These severs were assigned a three-way additive secret share
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of data submitted from each I'TL member via a web application over the internet.
Once the shares were received from each participant, each server performed the
required analysis, which was essentially comprised of a privacy-preserving bubble
sort (the code for which can be found in Appendix A of [33]). As a result, each
server produced an additive share of the output, which was recombined with the
output from the other two servers to obtain the analysis result, which was then
used by the ITL members to generate reports for business stakeholders. As stated
in [32], this application of the Sharemind Framework was the first time secure
multiparty computation was used solve a real-world problem over a wide-area
network.

Following on from this implementation, Cybernetica has acted as a consultant on
numerous privacy-preserving data analytics projects using the Sharemind Frame-
work, including:

e The development of an application for the US Defense Advanced Research
Projects Agency (DARPA), to help estimate the probability of satellite col-
lisions, with only the knowledge of secret shared satellite location data [34].

e A feasibility study, financed by the European Regional Development Fund,
aimed to demonstrate that the Sharemind Framework could be used to per-
form genome-wide association studies, without the need for patients to dis-
close their sensitive medical records to a third party [35].

3.2 Applications of the Future

With the arrival of many practical implementations of MPC over the last decade,
such as those described in Section 3, work has continued within academia to study
the viability of employing MPC as a solution to a range of unique and interesting
problems, such as:

e Using MPC to create privacy-preserving disease symptom trackers, such as
that which is described in [36]. The underlying secure computation in [36]
utilises SPDZ [37], a general purpose MPC protocol and implementation
similar to Sharemind.

e Using MPC to train machine learning models without the requirement of full
access to potentially sensitive data, as researched in [38]. The underlying
secure computation described in [38] is supported by additive secret sharing.

e Using MPC to guarantee the privacy of the users of online dating platforms,
as studied in [39]. The application of MPC in [39] is facilitated by Yao’s
garbled circuits.
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4 Threshold Signature Schemes

4.1 Overview

Digital signature schemes — a class of cryptographic primitive providing both data
origin authentication and non-repudiation — are heavily utilised within modern
world processes, including digital communication (such as S/MIME [40]), soft-
ware distribution, and cryptocurrency transactions (such as Bitcoin [41]). Digital
signature schemes are generally comprised of three stages: key generation, mes-
sage signing, and signature verification. Formally, following Katz and Lindell’s
definition [42], a digital signature scheme is comprised of a triple, (G,S,V), of
probabilistic polynomial-time algorithms:

1. A Key Generation Algorithm, G — generates the public (verification) key,
k., and private (signing) key!, k,. Any entity that executes this phase of
the signature scheme must define the required security parameter, r, often
represented in unary as 1%. The security parameter, , is used to define
the overall security of the scheme (e.g., the success probability of a poten-
tial adversary is measured as a function of k). This algorithm is denoted:
(ky, ks) < G(17).

2. A Message Signing Algorithm, S — generates a signature, o, computed over
a message, m € M, using the private key, ks. Here, M is the message
space defined within the signature scheme. This algorithm is denoted: o <

Sks (m)

3. A Signature Verification Algorithm, V' — as input, takes a message, m, a
signature, o and public key, k,, and as a result, generates a single-digit
binary value, b. This is denoted: b := Vj, (m, o).

For a digital signature scheme to be correct, it is required that for all x, (k,, ks)
generated by G(1%) and m € M:

Vi,(m, o) =1

where o < Sy (m). A signature, o, is said to be walid if Vj (m,0) = 1, and
otherwise invalid if Vi, (m, o) = 0. At a high-level, a digital signature scheme can
be used by an entity belonging to one of two categories. One party, known as a
signer will execute the key generation algorithm, G, to obtain (k,, ks) and will
publicly announce k,. The signer will then compute o < Sk, (m) for a chosen
message, m and publicise ¢ and m to any other entity that may wish to verify

'In this report, we use the terms public key and verification key interchangeably, and similarly
private key and signing key interchangeably.
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the signature at a later date. Any number of entities in possession of o, m and
k, are then able to execute the signature verification algorithm, V', to determine
if Vi, (m,o0) = 1, and the signature is valid, or Vj, (m,o) = 0, and the signature
is invalid. If the signature is valid, this means that the verifier can be sure that
m was produced by the signer, it was not modified in transmission (data origin
authentication) and the signer cannot later deny that the signature was created
by them (non-repudiation).

For our purposes, the most important characteristic to observe in relation to tra-
ditional signature schemes, such as DSA and RSA (standardised in FIPS 186-4
[43]), is the one-to-many relationship between the number of signers and verifiers
that can interact with the scheme. That is, all signatures created using traditional
signature schemes can only be generated by a single signing party, yet any num-
ber of parties are able to verify this signature, given they are in possession of the
signer’s public key. Therefore, a natural extension of traditional signature schemes
is to allow multiple signatories to participate in the signing process to produce a
valid signature, akin to signatures in the physical world. This can be achieved us-
ing threshold signatures?, the first of which was devised by Desmedt and Frankel
[44] in 1991. Threshold signature schemes leverage secure multiparty computation
techniques (namely, secret sharing schemes) to allow the signing parties to define
a quorum of participants at the key generation phase, that must be present during
the signing phase to produce a valid signature. Any number of signatories less than
this defined quorum (or threshold) will not be able to produce a valid signature.
As described throughout the literature [5, 44|, a (¢, n)-threshold signature scheme
(with t < n) is a signature scheme that requires n participants to contribute dur-
ing key generation and at least ¢ of these participants to contribute during the
signing phase to generate a valid signature. This is commonly known as a t-out-
of-n threshold signature scheme. Formally, following Boldyreva’s definition [45],
a (t,n)—threshold signature scheme consists of a triple of polynomial-time algo-
rithms / protocols, (T'G,T'S, V'), that can be seen as an extension of the traditional
signature scheme (G, S,V):

1. A Threshold Distributed Key Generation (DKG) Protocol, TG — an inter-
active protocol executed between n > 1 participants, Py, ..., P,, such that
each participant, P;, receives the public key, k,, and a threshold secret share,
s;, of the corresponding private key, k;. The share s; is known only to par-
ticipant P;, and the private key, ks is never known by any participant in its
entirety.

2. A Threshold Message Signing Protocol, T'S — an interactive protocol exe-
cuted between all or a subset of { Py, ..., P,}, each of whom are in possession
of their private share of ky and a message m that each party has agreed to
jointly sign. The execution of this protocol consists of two distinct phases:
signature share generation and signature construction. To generate a signa-

2Threshold signatures are not the only technique that can be used to achieve this property,
as will be discussed in Section 4.3.4.
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ture share, each participant uses their share, s;, of private key k, to sign m
and produce a share of the signature of m, denoted ;. To construct the
signature, o, each participant, P; must send their signature share, o; to all
other participants in the defined subset. Each participant, now in posses-
sion of a threshold of signature shares, can combine these to generate the
signature, o.

3. Signature Verification Algorithm, V' — as input, takes a message, m, a sig-
nature, o and public key, k,, and as a result, generates a single-digit binary
value, b. This is denoted: b := Vj, (m, o). This algorithm is identical to the
verification algorithm of a traditional signature scheme.

Throughout the rest of this report, we will refer to k, as the group verification key,
the corresponding private key, ks, as the group signing key, and o as the group
signature. The crucial comparison we can make between a traditional signature
scheme and a threshold signature scheme is that following a complete execution
of T'S, a group signature is derived that is indistinguishable from a traditional
signature and can be verified using the group public key. As such, the verification
algorithm in the threshold signature scheme does not require any modifications
to be compatible with the verification algorithm of the underlying traditional
signature scheme.

While the extension of traditional signature schemes to support the quorum prop-
erty offered by threshold schemes is beneficial in most applications that employ
digital signatures, as the utility and adoption of Bitcoin continues to increase, the
necessity for the design and implementation of robust threshold signatures within
Bitcoin is becoming more apparent. Indeed, the mismanagement of bitcoin cus-
tody (i.e., the loss of a private key) could lead to a loss of bitcoin with substantial
financial value. As designed by Nakamoto in [41], Bitcoin transactions occur be-
tween users of the Bitcoin network and are authorised using digital signatures.
Any user on the network can generate a public / private key pair — the private key
authorises a transaction from the user by producing a signature over the transac-
tion details (such as recipient address and amount), and the associated public key
is used by nodes on the Bitcoin network to verify that the signature was indeed
produced by the owner of the associated private key, and therefore whether they
are authorised to spend the bitcoin specified in the transaction.

Two inherent weakness arise if Bitcoin transactions can only be approved by a
single-party, the first relating to key management. A survey conducted in 2016
by Krombholz et al. [46] found that out of 990 participants, 22.5% admitted to
having lost bitcoin, or a private key associated with bitcoin, at least once in the
past. The reasons cited by Krombholz et al. include user error (such as hard drive
formatting or a misplaced private key), security breaches, hardware failure, and
software failure. Threshold signature schemes have the capacity to address this
issue. A threshold signing key is produced in a distributed manner, such that
each party contributes to the generation process, but no single party is ever in
possession of the signing key in its entirety — and is never reconstructed — even
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during the signing process. It is in this sense that threshold signature schemes
can be seen as an application of secure multiparty computation, where the key
generation and signing phases are functions that multiple parties wish to jointly
compute, without a trusted third-party nor the requirement for any parties’ input
(i.e., their contribution to the group’s signing key) to be revealed to any other
participant. Then, because threshold signature schemes are initialised with a
threshold, (¢t,n), up to n — t private keys can be lost or stolen, without a loss of
funds. Hlustrating this with a concrete example, assume that Py, P, and P each
contribute to the key generation process, receiving their share of the group private
key s1, s, and sz respectively. Furthermore, assume that the participants have
agreed to a threshold of two, meaning that they have agreed to participate in a
(2, 3)-threshold signature scheme. It then follows that if only one party, P;, loses
their share, s; for i € {1,2,3}, the other parties P; for ¢ # j € {1,2,3} will still
be able to produce a valid signature and therefore access their funds.

While similar to the first weakness described above, the second weakness in single-
party signed transactions relates to shared custody and approval. Clearly, with
transactions signed by a single party, only one party is required to sign and there-
fore approve a transaction. This, however, does not scale well in reality, where
funds could be shared by a number of parties and should only be transferred when
a defined quorum form an agreement. As an example, assume three business part-
ners decide to jointly own bitcoin. If the private key is generated in the traditional
single-party manner, all three parties would need to be trusted with the author-
ity to perform transactions on their own. This trust relationship between parties
can be exploited, if one of the business partners decides to perform a transaction
against the will of the others, or is coerced into doing so by a malicious third-
party. To address this issue, assume the three parties define a 3-out-of-3 threshold
signature scheme to authorise their transactions. There is, therefore, no longer a
requirement for trust between the signing parties, as all three parties must approve
all transactions.

In the remaining sections of this chapter, we will explore the currently available
commerical implementations of threshold signature schemes within Bitcoin wallets
(software implementations that are utilised by users of the Bitcoin network to
sign and therefore authorise transactions). We will then describe, in-detail, how
a specific implementation of a contemporary threshold signature scheme (known
as FROST [5]) achieves the desired properties described above. Included in this
description, we will illustrate the utility of FROST by executing a proof-of-concept
Python script that we have produced for this report. Finally, we will compare and
contrast FROST with another signature scheme, namely MuSig2 [47], along with
other mechanisms that can be used to achieve similar properties.

4.2 Commercial Implementations

Much of the innovation within the field of threshold signature schemes stems from
researchers and developers working to implement commerical products. Sepior, a
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technology company based in Denmark claim to have been the first to implement
a threshold signature cryptocurrency wallet and transaction solution in 2018 [48].
Since then, many more companies have implemented their own threshold signature
wallets, including UnboundSecurity (formerly UnboundTech) [49], and ZenGo [50].
The products of both Sepior and Unbound Security are marketed for enterprise
clients, and therefore not available to consumers. Both companies also have lim-
ited information available in relation to the exact technical specifications of their
products. In contrast, ZenGo offer a consumer-grade threshold signature digital
asset custody solution, known as the ZenGo Wallet, which is available on both the
Apple App Store and Google Play Store. According to ZenGo’s official website
[50], the ZenGo wallet implements a modified version of Yehuda Lindell’s threshold
ECDSA signature scheme [51], where ECDSA is the elliptic curve implementation
of the DSA algorithm, that has been standardised by NIST in FIPS 184-4 [43].
Lindell’s protocol allows two participants to jointly generate an ECDSA key pair
and signature, therefore translating to a 2-out-of-2 threshold signature scheme.
This means that both participants must always interact to generate a valid signa-
ture (i.e., the threshold of the scheme is not user-defined). This protocol is suitable

for ZenGo’s use-case, which utilises Lindell’s protocol in the following manner, as
described in [50] and [52]:

1. Given that a user has downloaded and initialised the ZenGo Wallet mobile
app, a Bitcoin public / private key pair is jointly generated by the user’s
mobile app and the ZenGo servers, such that each receive a share of the
group private key, which itself is never in possession of either the mobile app
or the ZenGo server.

2. Once both shares are generated, the mobile app will locally encrypt the
user’s share using the device’s native key generation and encryption engine
(e.g., the iOS Security Enclave) and send this encrypted share to ZenGo’s
servers for storage. The decryption key will then be stored by the user’s
cloud storage provider (e.g., iCloud). The decryption key is stored in the
cloud to ensure that the user is still able to recover their share in the event
that their mobile device is lost or damaged. Although ZenGo’s servers are
in possession both shares, ZenGo are unable recover the group private key
and authorise transactions on their own, as they do not have access to the
user’s decryption key to reveal the user’s share in plaintext.

3. To authorise a transaction from the ZenGo Wallet, the user first authen-
ticates themselves to the app, which then fetches the decryption key from
the cloud storage provider and the encrypted share from the ZenGo servers.
The app can then recover the user’s share and jointly sign and therefore
authorise a transaction by executing the signing phase of Lindell’s protocol
[51] with the ZenGo servers.

ZenGo have also released an audited, open-source implementation of the thresh-
old signature wallet described in [52], which is written in Rust and available at
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[53]. This repository also includes three further implementations of alternative
threshold ECDSA signature schemes [54, 55, 56|, that have been developed since
Lindell’s protocol was released in 2017. The most recent of the three threshold
signature schemes, proposed by Gennaro et al. [56], offers full ¢-out-of-n ECDSA
signing capabilities and also provides identifiable abort, a mechanism that halts
the protocol if misbehaving participants (i.e., those who do not participate in the
protocol correctly) are detected, and publicises which participant caused the abort
to other participants.

It is clear that a great deal of work has been done to not only develop efficient
and secure threshold ECDSA schemes, but also integrate them into commercial
products over the last few years. Threshold ECDSA has been the focus for many
academics in the past, with it currently being the favoured signature scheme used
to approve transactions within the Bitcoin network [57]. However, this is set
to change in November 2021, when a soft fork (i.e., backwards compatible up-
grade) known by developers as Taproot [58] will take place, affecting the format
of transactions that will be deemed as valid on the Bitcoin network. Among other
improvements, Taproot will allow Schnorr signatures to be used to sign trans-
actions, alongside ECDSA [59]. As a result, there is now increased interest and
research being undertaken to develop threshold Schnorr signature schemes, one of
which is known as FROST [5].

4.3 FROST Signature Scheme

4.3.1 Traditional Elliptic Curve Schnorr

Before we delve into FROST, we must first describe how a traditional Schnorr
signature scheme operates. The Schnorr signature scheme was first devised by
Claus-Peter Schnorr in 1989 [60], however it did not receive the same acclaim
and wide-spread adoption as DSA, as its use was restricted due to a patent that
Schnorr filed in 1991 [61]. In his original paper [60], Schnorr designed the signa-
ture scheme to operate over the finite cyclic group, Z;, which is the multiplicative
group of integers modulo a prime, p. The security of Schnorr, like many other
signature schemes such as DSA, rely on the fact that there is no currently known
method to efficiently solve the discrete logarithm problem (DLP), as we have al-
ready discussed in Section 2.2.3.3. The discrete logarithm problem can be applied
to any finite cyclic group, and as a result, the Schnorr signature scheme can be
modified to operate over an elliptic curve group, much like DSA has been extended
to ECDSA. Commonly, an elliptic curve over a finite field, IF,, is used and is de-
noted E(F,), where p is a large prime. In this context, given a generator point,
G, of the elliptic curve E(F,), and a point ) on E(F,), the DLP is the task of
finding a integer, 0 < z < |E(F,)| such that Q = z-G. As stated in [59], the Tap-
root soft fork to Bitcoin will implement the elliptic curve variant of the Schnorr
signature scheme, operating over an elliptic curve known as secp256k1, which is
recommended for cryptographic use by the Standards for Efficient Cryptography
Group [62]. Various specifications currently exist to describe the elliptic curve
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variant of the Schnorr signature scheme, each with their own minor differences —
for example, the ISO/IEC 14888-3 standard for elliptic curve Schnorr known as
EC-FSDSA [63] and the specification outlined in BIP-340 [59] that will be imple-
mented in Bitcoin, both differ with respect to the input of the hash function during
the signing and verification phase of each scheme, however both are functionally
equivalent. With a view to remain consistent with the FROST specification, our
description of the Schnorr signature scheme will follow what is outlined in [5],
however our description will extend this paper to operate over an elliptic curve,
instead of in the group Z;.

Suppose that G is a generator point for E(IF, ), where p is prime, and n is the order
of G, which is also prime. Let H : {0,1}* — F, be a hash function. Then, the
Schnorr signature scheme is defined as a triple of probabilistic polynomial-time
algorithms:

e A Key Generation Algorithm — given the security parameter (in unary)
as input, 17, this algorithm generates and returns the signing key, ks,
and verification point, (), for the scheme as follows:

1. Pick, at random, an integer ks € [1,n — 1] using the uniform distri-
bution.

2. Set Q<+ ks-G.
3. Return (ks, Q).

e A Message Signing Algorithm — given, as input, a message m € {0,1}*
and signing key, kg, this algorithm produces the signature, o, over m as
follows:

1. Pick, at random, an integer r € [1,n — 1] using the uniform distri-
bution.

Set R<r-G.
Compute ¢ < H(R || Q || m).

Set s <= ¢ X ks + 1 (mod n).

A S

Return o = (R, s).

e A Signature Verification Algorithm — given a message m € {0,1}*, a
verification point, ), and signature, o, as input, this algorithm returns
a single-digit binary value, b, as follows:

1. Parse o as the components (R, s).
Compute ¢ < H(R || Q || m).

Set R\ <+ s-G—c-Q

Set b+ 1 if R = R’. Otherwise, set b < 0.

- W
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5. Return b.

As the hash function, H, is defined to map an input of in the form {0,1}* to an
element in [F,, all inputs must be encoded into byte form. Both R and @) are
points on an elliptic curve, and as such are comprised of an z-coordinate and a
y-coordinate. Therefore, it is up to the implementer how these points are encoded.
In EC-FSDSA [63]|, R = R, || R, where R, and R, are the x-coordinate and y-
coordinate of R represented in bytes respectively. This is in contrast to BIP340
[59], that encodes R and ) using only their respective z-coordinates. Either way,
it is only necessary that the signing and verification algorithm encode elliptic curve
points in the same way to ensure that the scheme produces valid signatures. For
our purposes, we will encode R = R, || R, and Q = @), || @, in both the signing
and verification algorithms.

4.3.2 Specification & Operation

A number of threshold Schnorr signature schemes have been proposed since the
beginning of the millennium, which [5] categories as either robust or non-robust
schemes — a robust signature scheme successfully generates a valid signature in
the presence of at most n — ¢t adversaries that contribute invalid shares, whereas
non-robust schemes simply abort (i.e., fail) when an invalid share is included by
an adversary. Early work in the field prioritised robust threshold Schnorr schemes,
at the expense of a high number of communication rounds ([64] requires at least
4 rounds during the signature generation phase) or a strict requirement that a
threshold of ¢ = n participants must be present to generate a valid signature (such
as the scheme proposed by Gennaro et al. [65]). The Flexible Round-Optimized
Schnorr Threshold (FROST) signature scheme, is a threshold Schnorr signature
scheme, devised by Komlo et al. in 2020, and is non-robust. While this appears to
be a downgrade from the previously proposed threshold Schnorr signature schemes,
Komlo et al. state in [5] that in reality this allows for the scheme to be secure in
the presence of a greater number of corrupt participants than in robust schemes
— that is, FROST is secure for so long as the number of corrupt parties is not
greater than or equal to the signing threshold, ¢, whereas robust schemes can only
be secure if the number of corrupt participants does not exceed n/2 [66]. FROST
improves upon both previously mentioned schemes, by requiring only one round
of communication in the signing phase (in comparison to 4 round in [64]) and is
able to produce a valid signature, as long as t < n participants are present (unlike
[65] that requires t = n participants to produce a valid signature). Furthermore,
the construction of FROST enables identifiable abort, unlike a scheme proposed
by Abidin et al. [67] in 2019.

We will now provide a detailed description of the FROST signature scheme, first
described in [5], with a step-by-step explanation as to how the scheme operates.
We will describe the scheme over an elliptic curve, E(F,) with order n, as opposed
to group Z, that is utilised in [5]. In line with our definition of threshold signa-
ture schemes from Section 4.1, FROST is comprised of two threshold algorithms,
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namely a threshold distributed key generation (TDKG) algorithm and a threshold
signature algorithm. We will start by describing the TDKG algorithm.

4.3.2.1 Key Generation

At a high-level, the key generation algorithm of FROST is an extended form of
Pedersen’s distributed key generation [68], which in turn is based on Feldman’s
Verifiable Secret Sharing as described in Section 2.2.3.3, executed simultaneously
by all n participants, such that no dealing party is required. As a result of this key
generation algorithm, each party will obtain the group verification key, @), and a
Shamir share, s;, of the corresponding signing key, k.

Assuming that the participants wish to define a t-out-of-n threshold scheme, each
participant, P;, constructs a polynomial f; and a set of commitments to the co-
efficients of f;, aligning with Feldman’s VSS, as described in Section 4.3.1, albeit
with minor modifications:

1. Each P, must generate a set of ¢ — 1 random values, {a, @, ..., a;u—1},
such that a;; € IF, is chosen using a uniform distribution.

) . t—1 ;

2. Each P; sets their function fi(z) = >_/_; a;2’.

3. For every 0 < j <t —1, each P, also computes ®;; = a,; - G, sending the set
Ci = {®i0, Pi1, ..., Pi—1)} to all other participants.

As these steps of Feldman’s VSS are executed by all n participants, the notation
from Section 2.2.3.3 has been altered to reflect this. Here, a;; denotes the j-
th coefficient of P;’s polynomial, f;, and ®;; denotes F;’s commitment to the
coefficient, a;;. In further contrast to Feldman’s VSS, a;y is generated uniformly
at random from [F,, not user defined as a;y = S, for some predefined secret, S.
Here, a;y acts as P;’s contribution to the group signing key, and as such must be
generated with suitable randomness.

Following this, each P; must generate what is known as a proof-of-knowledge of
their contribution, a;y, to the group signing key and send this to all the other
participants®. To do so, P; must compute a standard Schnorr signature (as defined
in Section 4.3.1) over their commitment ®;o = a;o - G, as follows:

4. Each participant, P;, picks, at random, an integer k; € [1,n — 1] using the
uniform distribution.

5. Each P; sets R, = k; - G.

3This is required to prevent rogue-key attacks, which are well defined in [69]. Essentially, it
ensures that participants cannot define their commitment as a function of the other participants
commitments, which could allow signature forgeries.
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6. Each P; computes ¢; = H(i || £2 || ;o || R;), where {2 has been included as a
context string to prevent replay attacks using c;.

7. Each P; sets u; = ¢; X a;o + k; (mod n).

8. Each P; sends o; = (R;, ii;) to all other participants.

Once each participant, P;, has received a proof-of-knowledge from all other par-
ticipants, they can verify them according to the standard Schnorr verification
procedure as described in Section 4.3.1:

9. For every 1 < ¢ < n such that ¢ # i, each participant P; computes ¢, =
H(C[| 2] o || Re)-

10. Each participant, P;, then checks the following equality holds, for every
1 < ¢ < n such that ¢ # 1

Ry = -G —cp- Py

If, for any /¢, the equality in step ten does not hold, the protocol will abort. The
computations necessary to complete Feldman’s VSS then resume, starting with
Shamir share distribution and share verification:

11. For every 1 < ¢ < mn, each P; constructs a set of n shares, {s;1, si2, ..., Sin},
of their contribution to the group signing key, a;o, such that s;; = f;(¢).

12. Each P; securely distributes the share, s;;, to the /-th participant respec-
tively, keeping s; = f;(i) for themselves. The polynomial f; and its corre-
sponding coefficients should be discarded.

13. Every P; now holds a set of Shamir shares, {s1;, S2, - - - , Sni }, such that each
s¢;i is the Shamir share of P,’s contribution, as, to the group private key,
ks. To verify that each Shamir shares is valid, every P; must compute the
following, for 1 < ¢ <n and 7 # ¢:

t—1
Sgi'G: E i]-q)gj
Jj=0

Again, if for any ¢ the equality does not hold, key generation aborts. The required
signing keys and group verification key can then be computed as follows:

14. Each P; can now compute their Shamir share, s;, of the group signing key,
ks, by computing the following sum:
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n

S; = E Sji

J=1

15. Each P; can then also compute the group public key, @), corresponding to
the group signing key, ks, by computing the following sum:

Q=> P
j=1

16. Finally, for reasons that will become clear in the signing protocol, each par-
ticipant must also generate the share verification point for all other partici-
pants P, by computing the double sum:

n t—1 n
Q=) > 1" 3= s G=k- G
j=1 k=0 J=1

In summary, this protocol has generated a group verification point, ) = ks - G,
where k; = >°°" | a;o is the group signing key. Each contribution by P; to the
signing key, a;o, has been Shamir shared between n participants, such that P; has
been given the share sy = fo(i) of ag, for each ¢ such that 1 < ¢ < n. The
shares in possession of each participant are summed to obtain a single Shamir
share of the group signing key, k. This follows in a similar fashion to the secure
function evaluation example described in 2.2.3.2 — we know that k, = Z?:1 Qo =
a0 + aso + ... + aye. Each contribution a;y has been Shamir shared by P; using

the function:

t—1

E j 2 t—1
fl<l’) = CLZ‘]'LE] = Q0 + ;1T + apxr” + ...+ ai(t,1)$ .

Jj=0

For every /¢ such that 1 < ¢ < n, each P, has been given the share sy; of ay from
P,, where:

e = fo(i) = aw + api+ api® + ..+ ag_1yi' "

As a result, each P; is in the possession of a set of shares, {si;, S2;,...,Sn}, and
the following holds for each P;:
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S':Su—FSQi—i‘ —|—Sm'
_fl()+f2() o fald)

- - t—1
= E alji] + E Clgjij + ...+ E anjz']
t—

= Z Q50 + Z aﬂz +...+ a](t_l)it_l

J
:a0+alz+a22 —i—...+at,1z

,_.

I\
o

-1

Here, each ay is the sum of the coefficients of ¢ of the functions f,(z), for 1 < ¢ <
n. Therefore, as by definition, ay = Z;;B ajo = ks, it follows that s; is a Shamir
share of ks that has been shared using the polynomial, F'(z), such that:

F(z) =+ aix +agr® +... + a2t
=kt + s’ + ..+ a2t

Therefore, s; is simply the evaluation of F'(x) at the point = = ¢, which is exactly
the construction of a Shamir share of k, as defined in Section 2.2.3.2. We can then
show that the generated verification point, @), is indeed associated with k,:

Q=) P
j=1

=P+ Py + ... +Ppo
:CL10'G+CL20'G—|—...+an0'G

n
= |2
i=1

=k -G

Following the above description, it is clear that this threshold distributed key
generation protocol is indeed an application of MPC. Each participant, P; has
contributed a random value a;y to the generation of k,, which is the sum of ay for
1 < ¢ < n, computed by each P; with only the knowledge of their contribution, a;,.
All other contributions, ag such that 1 < ¢ < n with ¢ # j, are kept private during
the computation. What makes this an even more powerful application of MPC
is the output, ks, is also never known in full by any participant. Instead, only a
Shamir share, s; of the group signing key, ks, is known by F;. Furthermore, neither
ks nor any participant’s contribution, a;y, can be obtained during the computation
of ), as a result of the difficulty in solving the discrete logarithm problem.
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4.3.2.2 Signing

At a high level, the threshold signing algorithm employed in FROST is com-
prised of two stages: signature share generation and signature construction. The
signature generation phase is executed by each member of the defined subset of
participants (the size of which must equal or exceed the threshold, t). As a result
of this phase, each participant, P;, will have generated a Shamir share, z;, of the
group signature, z, over the message m. Following this, a participant known as
the signature aggregator (SA) will obtain a signature share, z;, from each partic-
ipant and combine them to produce a group signature o over m. The role of the
signature aggregator can be assigned to any participant, or even a third party, as
the entity in this role does not gain any information that would compromise the
security of the protocol (such as the group signature key). In the original paper
[5], Komlo et al. define a preprocess phase that precedes the signature algorithm,
which is included as a measure to increase the efficiency of the signature algorithm
when it is performed more than once between the same set of participants. As
we are only concerned with the operation of this algorithm to generate a single
signature, we will not include the preprocess phase in our description, to avoid
unnecessary complexities.

Assume that the key generation algorithm has been executed between n partici-
pants, and a subset, S, of n participants wish to jointly sign a message, m, where
S contains the indices representing each participant. Again, the size of S must
be at least ¢t to produce a valid group signature. As a result, each participant P;
such that ¢ € S is in possession of the group verification key, (), and a Shamir
share, s;, of the group signing key, ky. Furthermore, we define H; : {0,1}* — F,
and Hy : {0,1}* — F, to be hash functions. Then, FROST signature shares are
generated as follows:

1. Each P; such that i € S generates two integer nonces, d;,e; € [1,n — 1],
using the uniform distribution. In addition, each P; generate commitments
to these values, D; = d; - G and E; = e; - G, sending (i, D;, E;) to all other
participants, along with the message, m, they wish to sign.

2. Given each P, receives (¢, Dy, Ey) from each participant such that ¢ € S and
i # (, each P, must verify that every D, and E; lie on the curve E(F,).
Each P; must also check that each m received is identical and matches the
message they wish to sign. If either verification fails, the protocol aborts due
to misbehaviour. Each participant then defines the set B = {(¢, Dy, Ey)} for
all £ € S.

3. For every € S, each P; computes the binding values*, pp = Hy(¢||m| B) and
each participants contribution to the nonce commitment R, = Dy+ (py - Ey).
By definition, this means that Ry = r,- G, where ry = (d;+egp;). The group
nonce commitment can then be computed by each P; as follows:

4These binding values are required to prevent Drijvers attack, as first described in [70]. An
in-depth description of this attack can be found in [47].
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R=> R,

les

The group nonce commitment, R, can equally be written R = r - G, where r =
Y g Te is the group nonce, which is computed as by-product of the sum that
is used to generate R above. The group nonce, r, cannot be computed directly
by any P; due to the difficultly of the discrete logarithm problem. With R now
generated, we can proceed with signature share generation:

4. Each P; computes the group challenge, ¢ = Hy(R || Q || m).

5. Then, to compute the group signature share, z;, each participant, P;, then
computes the following:

zi =c X Ns;+ (d; + e;p;)  (mod n)

This last step is analogous to Step 4 of the traditional Schnorr signing algorithm in
Section 4.3.1, where the term (d; 4 e;p;) can be seen as P,’s contribution to r, and
A;s; can be seen as P;’s contribution to the signing key, k,. Here, \; corresponds
to P;’s Lagrange coefficient (defined in Section 2.2.3.2) evaluated at zero, which is
used to convert P;’s Shamir share, s;, of the group signing key, k,, into an additive
share of k;. This Shamir to additive share conversion process is borrowed by
the authors of FROST from Cramer et al. [71] and works similar to the recovery
process for Shamir shared secrets in Section 2.2.3.2. It will become evident why
this conversion process is necessary when signature construction is explained.

Given that each P; is in now in possession of a Shamir share, z;, of the group
signature, z, the signature aggregator can now proceed with the signature con-
struction phase of the protocol. We will assume that the signature aggregator has
been chosen as one of the participants P; of the signing protocol (therefore not
a third-party). As such, the signature aggregator is already in possession of p,
and Ry for each ¢ € S, along with R and c. Then, the signature aggregator must
perform the following;:

6. Obtain z, from all ¢ € S, including their own signature share.

7. For each ¢ € S, verify that the following equality holds, where @), is the
share verification point generated in Step 16 of the key generation protocol:

Z@'GZR@‘F(C)\[)-Qg
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This verification step is performed to ensure that each participant, P;, has gener-
ated a valid signature share and is therefore not attempting to subvert the protocol.
If the signature share, z, has been generated correctly, this verification step holds
because:

Ro+ (cho) - Qo= Dy~ pe- Eo + (chesy) - G
= (d¢ + peer) - G+ (chese) - G
= [esehe + (do + epr)] - G
::ZZ'(;

8. Finally, the signature group signature, o = (R, z), can be published along
with the message m by the signature aggregator, where z is computed as
follows:

Z:E z0

les

The simplicity of this final step is due to Shamir to Additive share conversion
process that takes place in step five. By deconstructing this sum, we can see more
clearly why this functions as intended:

Z:E Z¢

=) Ao+ (do + eopr)
(€S

= CZ ANeSp + Z(dg + 6gpg)

les Les

We know from Section 4.3.2.1 that s, is simply P,’s Shamir share of the group
signing key, ks, which is constructed from the function, F'(x). We also know that
A¢ is Py’s Lagrange coeflicient evaluated at zero. Therefore, from the Shamir share
reconstruction process defined in Section 2.2.3.2, we know that the following holds:

Z)\gS( = F(O) = k’s
Les

Furthermore, we know from step three of the FROST signing protocol the following
is true:
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D (detep) = re=r

les les

Here, r is the group nonce associated with the group nonce commitment R = r-G,
defined in the description following step three of the signing protocol. As a result,
we can write the following:

z = cz AeSp + Z(dz + ewpr)

tes tes
=ck,+r

Therefore, given z = cks +r and R = r - G, it is clear that o = (R, 2) is a valid
signature on m with respect to the definition of a traditional Schnorr signature as
defined in Section 4.3.1.

In summary, the signing protocol of FROST generates a traditional Schnorr signa-
ture 0 = (R, z) over m using the group signing key, k;. To achieve this, a set of S
participants must engage in the protocol, where |S| > t. As input, each participant
P; requires a Shamir share s; of the group signing key, k,, the group verification
point, @ and the share verification point, ), associated with P, for £ #i € S. To
generate o, the group signing key, kg, is never reconstructed — indeed, the signing
key is never reconstructed at any point during its lifecycle, even during key gener-
ation. This signing protocol is clearly an application of MPC. Given each signing
participant P; possesses a Shamir share, s; of the group signature key, kg, the pro-
tocol defined above allows the participants to jointly compute the output of the
signing function (i.e., a Schnorr signature over m) while maintaining the privacy
of each participants individual inputs (i.e., their Shamir share associated with k).
As required by the definition of a threshold signature scheme from Section 4.1,
there is no need to define a verification protocol to handle FROST signatures, as
FROST’s signature generation algorithm produces a traditional Schnorr signature
as defined in Section 4.3.1. As such, the verification process follows exactly what
is described in Section 4.3.1.

4.3.3 Proof-of-Concept Demonstration

To illustrate the feasibility and utility of the FROST signature scheme, we have
produced a Python script that locally executes the key generation and signature
generation protocols of FROST, with a view to demonstrate their correctness (i.e.,
the protocols produce the required output). Our implementation does not include
any verification steps that are used to identify corrupt participants — namely,
steps four to ten and step sixteen of the key generation algorithm (i.e., the proof-
of-knowledge verification) and step two and seven of the signing algorithm. In
a production environment, where these protocols are designed to executed on
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independent machines that interact over a network, verification steps are vital
to ensure that all participants behave correctly. However, because our script
is a proof-of-concept that is designed to perform all computations locally, as if
to simulate the multiparty setting, including these verification steps would be
unnecessary for our purposes.

Our implementation of FROST is comprised of three scripts:

e EllipticCurve.py — this script facilitates operations over an elliptic curve,
including addition, subtraction, multiplication and equality comparison. We
have defined our elliptic curve operations to take place over the secp256kl
curve. This script is listed in Appendix A.

e FROSTLib.py — this script contains all the functions necessary to perform
key generation, along with signature generation and verification as we have
outlined in Section 4.3.2. This script is listed in Appendix B.

e FROST.py — this script imports functions from El1lipticCurve.py and
FROSTLib.py so that FROST can be executed from a command line inter-
face. This script is listed in Appendix C, which also defines which options
can be specified during execution.

We will first demonstrate how our script can be used to generate a 3-out-of-5
threshold Schnorr signatures. Assuming that we have a terminal session open
and are operating within a working directory that contains the three scripts listed
above, FROST key generation can be performed as follows:

py FROST.py G °
-n 5 °
-t 3

Listing 4.1: FROST Key Generation using FROST.py

Here, the ~ character allows us to define the terminal command over multiple lines.
This command will output the following in the terminal:
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Number of parties: 5
Singing threshold: 3

Group Verification (Public) Key:
(96260828981163801749224482766316882733140451526364848399529806302690869460221 ,
83965533227609309761895667960534248993548255020751096125821997624819009751889)

P_1's Shamir Share:
178265156394764809337971754723765719581931152225420621152525332562254202111445
P_2's Shamir Share:
159717236413739184050888242088777674474737030557125352506552330758587232713706
P_3's Shamir Share:
337686394480885331977082908326477646278535657803503671810472133432501099364749
P_4's Shamir Share:
364796362884254666845842798410801911434814341127330865916469251159441317581563
P_5's Shamir Share:
356839230861163384080738897350438377796410644807681839207148847080926048858485

Listing 4.2: Key Generation Output using FROST.py

As can be seen in Listing 4.2, each of the five participants receives a Shamir
share, s;, of the group signing key, ks, which in turn is associated with the group
verification key, () = ks - GG, which is a point that lies on the secp256k1 elliptic
curve. In a production environment, the Shamir shares shown in Listing 4.2 would
be generated between five separate entities (e.g., five servers), each generating a
Shamir share of kg that is only ever known to them and stored securely (such as
on a hardware security module).

Now, assuming that three participants (say, P», Ps3 and Ps, chosen arbitrarily)
wish to jointly sign message (say, "lorem ipsum"), we can simulate the FROST
signing protocol using the following command:

py FROST.py S °

-p235°

-s h
159717236413739184050888242088777674474737030557125352506552330758587232713706
337686394480885331977082908326477646278535657803503671810472133432501099364749 °
356839230861163384080738897350438377796410644807681839207148847080926048858485
-m "lorem ipsum" °

_q =
96260828981163801749224482766316882733140451526364848399529806302690869460221 ~
83965533227609309761895667960534248993548255020751096125821997624819009751889

Listing 4.3: Signature Generation using FROST.py

As a result of executing this command, the following output is displayed in the
terminal, which is a Schnorr signature of the form o = (R, 2):
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R:
(28509218713211509900654072927804769881578194825392330864789768854200657492853,
32069277231006561512927048381384137307384120915717722246959406290300608562277)

z: 1665511809140650853124441185559502373659226911195287706769967509309666535689

Listing 4.4: Signature Generation Output using FROST.py

The values of R and z will of course vary per execution, as a nonce value is freshly
generated per signing operation. Finally, the signature over our example message
can be verified using the following command:

py FROST.py V °

-r e
28509218713211509900654072927804769881578194825392330864789768854200657492853 ~
32069277231006561512927048381384137307384120915717722246959406290300608562277 ~
-z
1665511809140650853124441185559502373659226911195287706769967509309666535689 ~
-m "lorem ipsum" °

_q =
96260828981163801749224482766316882733140451526364848399529806302690869460221 °
83965533227609309761895667960534248993548255020751096125821997624819009751889

Listing 4.5: Signature Verification using FROST.py

Running the command in Listing 4.5 outputs the following the the terminal:

R_v:
(28509218713211509900654072927804769881578194825392330864789768854200657492853,
32069277231006561512927048381384137307384120915717722246959406290300608562277)

Signature Verified (R == R_v): True

Listing 4.6: Signature Verification Output using FROST.py

As can be seen in Listing 4.6, participants P,, P3 and Ps have successfully produced
a joint signature over the defined message that is valid according to the Schnorr
verification algorithm described in Section 4.3.1. We can now demonstrate what
occurs if the threshold of participants is not met when attempting to produce a
joint signature using FROST.py. Assuming that each participant is in possession
of the Shamir shares and group verification key present in Listing 4.2, we can
observe the outcome of an execution of the signing protocol between P, and P;.
As before, a signature can be generated as follows:
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py FROST.py S °

-p24°

-s h
159717236413739184050888242088777674474737030557125352506552330758587232713706 ~
364796362884254666845842798410801911434814341127330865916469251159441317581563 °
-m "lorem ipsum" °

_q h
96260828981163801749224482766316882733140451526364848399529806302690869460221 ~
83965533227609309761895667960534248993548255020751096125821997624819009751889

Listing 4.7: Invalid Signature Generation using FROST.py

This command returns the following signature in the terminal. As in our last
example, the value of R and z here will vary per execution:

R:
(79711894534300787163933378548292328545558540962747370571669611131880115102677,
90698699280151876936264568357296771838873876527949883705873934222802404043645)

z: 41370641889203042384322102648861283734366258052854618888534681614446896180847

Listing 4.8: Invalid Signature Generation Output using FROST.py

We can then verify this signature in a similar manner to what was outlined in our
previous example:

py FROST.py V °

_r‘
79711894534300787163933378548292328545558540962747370571669611131880115102677
90698699280151876936264568357296771838873876527949883705873934222802404043645 -~
-z
41370641889203042384322102648861283734366258052854618888534681614446896180847
-m "lorem ipsum" °

_q‘
96260828981163801749224482766316882733140451526364848399529806302690869460221 °
83965533227609309761895667960534248993548255020751096125821997624819009751889

Listing 4.9: Invalid Signature Verification using FROST.py

As a result of this command, the following is output in the terminal:

R_v:
(36698669569201395792937681337147276004439804300456925926697651498328826039677 ,
77628231457973356339637882711863783002051108424104675016208371779117408566432)

Signature Verified (R == R_v): False

Listing 4.10: Invalid Signature Verification Output using FROST.py
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Referring back to Section 4.3.2.2, the signature in Listing 4.10 is invalid because
an insufficient number of participants have contributed to the computation of z.
In this case, only two of a required threshold of three participants have contributed
to the signing process, and as a result the underlying group key, k,, has not been
reconstructed correctly to allow a valid Schnorr signature to be produced.

As we have clearly shown, the FROST signature scheme as described in Section
4.3.2 and originally by Komlo et al. in [5] does indeed satisfy two of the most
fundamental properties of a threshold signature scheme, as defined in Section
4.1. That is, to produce a valid signature, a defined threshold of participants
must contribute to the signing process, as seen in Listing 4.6. If the number of
participants is below the defined threshold, the signature produced will not be
valid, as seen in Listing 4.10. Furthermore, given the threshold of participants is
met, FROST generates a valid signature according to the verification algorithm
of the underlying traditional signature scheme, in this case being the Schnorr
signature scheme.

The reader is welcome to use the scripts available in the Appendix at their dis-
cretion, either by confirming the computations outlined above, or to instantiate
their own FROST signature scheme on their machine with custom parameters.

4.3.4 Alternative Techniques / Mechanisms

In the context of secure custody and transfer of digital assets (specifically Bitcoin
in this report), there are a wide variety of mechanisms that can be used to achieve
similar objectives to the FROST signature scheme. In this section, we will form
a comparison between FROST and three alternative mechanisms, detailing how
they can each be used to secure a Bitcoin wallet.

4.3.4.1 Shamir Secret Sharing

Although it may seem strange to compare FROST to a mathematical primitive
that FROST itself depends upon to operate, to an extent Shamir Secret Sharing
can be used independently to support the secure self-custody of bitcoin. Indeed,
the popular hardware wallet manufacturer Trezor have implemented a variant of
Shamir Secret Sharing into their Model T hardware wallet [72], which under Tre-
zor’s design documentation is known as SLIP-0039 [73]. This acts as a replacement
for the BIP39 [74] design specification, which was created by the developers of Bit-
coin to standardise a method for generating a backup of a Bitcoin wallet and the
private key(s) associated with it using a human-readable mnemonic phrase com-
prised of 12 to 24 words. On the other hand, SLIP-0039 allows a wallet user to
generate up to 16 distinct mnemonic phrases comprised of 20 to 33 words, each of
which represent a shamir secret share of the Bitcoin private key®. Furthermore,
the user can define the threshold of shares / mnemonic phrases required to recover
the private key, which is performed using Lagrange interpolation, as described in

5In reality, the relationship between mnemonics phrases and private keys is slightly more
complex than this (due to commonly used Hierarchical Deterministic Wallets [75]).
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Section 2.2.3.2. In the event that any shares are lost or stolen, as long as a thresh-
old of shares remain accessible to the legitimate owner of the wallet, the private
key(s) and bitcoin associated with them will be recoverable.

Clearly, Shamir Secret Sharing is not a signature scheme and as such is not di-
rectly comparable to FROST. However, both mechanisms do interrelate, which is
not surprising as the operation of FROST is itself underpinned by Shamir Secret
Sharing. The crucial difference between a collection of wallets that (theoretically)
implement FROST and a wallet that implements Shamir Secret Sharing as de-
scribed in SLIP-0039, is that the latter is subject to a single point of failure. That
is, if a Bitcoin private key is split using Shamir Secret Sharing alone, as imple-
mented in the Trezor Model T, the private key must be recovered and present on
a single device before any transactions can be signed. Further, the private key
must also be present on a single device when the shares themselves are gener-
ated. As such, the device where private key generation or recovery takes place
is a potential target for attack / theft by an adversary. Exacerbating this issue,
SLIP-0039 actually only defines Shamir Secret Sharing as a backup technique — in
other words, the Trezor Model T stores the private key in its entirety even after it
has been split using Shamir Secret Sharing, therefore the device remains a single
point of failure and target for attack, unless the device is factory reset after share
generation.

In contrast, while the underlying operation of FROST relies on Shamir Secret
Sharing, it is instead implemented in a distributed manner such that the private
key is generated and Shamir shared simultaneously, and is therefore never present
on a single device in its entirety. This is also the case during the signing protocol,
whereby a joint signature is generated by a threshold of participants, such that
a single entity is never in possession of group private key. Therefore, to gain
unauthorised access to the group private key owned by a collection of wallets
that implement FROST, an adversary would need to attack a threshold of wallets
simultaneously to obtain a sufficient number of shares to recover the group private
key and steal the bitcoin associated with it.

4.3.4.2 Native Bitcoin Multisignatures

The next alternative we will discuss is native Bitcoin multi-signatures (often re-
ferred to as Multisig). We use the term native multi-signature to refer to the
multi-signature support that is offered directly by transactions that take place
on the Bitcoin network. As outlined extensively in [57], all Bitcoin transaction
contain embedded code, written in a language called Bitcoin Script, that is ex-
ecuted by nodes on the network to ensure they are valid (i.e, a transaction has
been signed by the user that owns the associated bitcoin). This Script language
features an opcode (i.e., a command) called checkmultisig that only allows the
bitcoin associated with the transaction to be spent if a defined threshold of sig-
natories include a valid signature of the transaction. This raises the question, is
there any need for FROST (or indeed any other threshold signature scheme) to be
implemented within Bitcoin wallets when transactions already seemingly support
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t-of-n threshold signatures via Bitcoin Script? The answer depends on whether
the two following benefits are important to the user:

e Reduced Transaction Fees — A multi-signature Bitcoin wallet with a
threshold of ¢ is essentially comprised of a n distinct wallets, each associ-
ated with their own public and private key. The bitcoin associated with
a multi-signature wallet (i.e., unspent transactions) contain the public
key associated with each of the n individual wallets. Then, to authorise
a transaction from a multi-signature wallet, at least t of n participants
must sign it separately, with their respective private keys. This means
that size of the transaction (in bytes) scales in proportion to size of both
n and t. As network usage fees depend on the number of bytes in a
transaction, utilising native multi-signature can become costly if either
t or n (or both) are large. As argued by Goldfeder et al. [76] a Bitcoin
wallet implementing a threshold signature scheme (FROST, in our case)
circumvents this issue, because the output of the signing protocol is a
single signature, and as a result the size of a transaction would remain
constant despite the size of n and t¢.

e Increased Privacy — In addition to reduced transaction fees, Goldfeder et
al. also argue in [76] that because a threshold signature scheme produces
a single signature as output, an external party observing the blockchain
would be unable to distinguish between a transaction signed by a single
party and one signed by multiple parties. This is in contrast to native
Bitcoin multi-signatures because, as mentioned previously, each trans-
action must contain the public key of all n owners of the wallet, which
could potentially reveal their identity.

4.3.4.3 MuSig2

MuSig is a multi-signature variant of the Schnorr signature scheme that was de-
vised by Maxwell et al. [77] with the explicit aim of addressing the issues present
with native Bitcoin multi-signatures as mentioned in Section 4.3.4.2. MuSig was
first proposed in 2018, however the scheme was then succeeded with the release of
MuSig2 by Nick et al. [47]. MuSig2 is largely identical to MuSig, however it im-
proves upon the former by reducing the number of communication rounds required
to produce a signature from three to two, and also addresses a flaw in the original
scheme that meant it was susceptible to Drijvers attack, discovered by Drijver et
al. in [70]. Both FROST and MuSig2 have the potential to reduce transaction
fees and increase privacy on the Bitcoin blockchain should they ever be integrated
into Bitcoin wallets in the future, however neither [47] nor [5] explain (at least, in
detail) the fundamental differences between the schemes. As such, we will briefly
describe the key generation and signing protocol of MuSig2, before comparing its
underlying construction and functionality to FROST.
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Similar with our description of FROST, we will extend the original specification
of MuSig2 from [47] to operate over an elliptic curve, instead of within the group
Z,,. We define the elliptic curve F (F,) with order n, where p is prime and G is a
generator point for the curve. Furthermore, let Hygg, Hpon, Hsig : {0,1}* — F,, be
hash functions. The MuSig2 key generation protocol then operates as follows:

1. Each participant P; picks, at random, an integer k; € [1,n — 1] using the
uniform distribution.

2. Each P; define their verification key as ); < k; - G and sends Q); to all other
participants.

Then, each participant computes the group verification key (a process which [47]
refers to as public key aggregation):

3. Assume that n participants wish to generate a joint verification key and
therefore each participant is in possession of the set, L = {Q1, Qa, ..., Qn},
of individual verification keys from step two. Then, the group (or aggregate)
verification key is computed by each P; as follows:

QIZCM‘Qi
i=1

Here, a; = Hugo(L || Q;) is known in [47] as the key aggregation coefficient and is
included as a measure to prevent rogue-key attacks (again, which are defined in
[69]). The signing protocol is then constructed as follows, beginning with shared
nonce generation:

4. Each participant, P;, picks v integers 71, 72, ..., 7% € [1,n — 1] at random
using the uniform distribution. In [47], Nick et al. suggest a value of either
v=2o0rv=4.

5. Each P; then computes R;; = r;; - G for each j € {1,2,...,v} and sends the
set {Ri1, Ria, ..., Ry} to all other signing participants.

6. Once each P; has received a set of nonce values from all other signing partic-
ipants, they can each compute the shared group nonces, {R;, Rs, ..., R,},
such that R; = >~} Ry for all j € {1,2,...,v}.

Using these nonces, each participant can now generate their individual component
of the group signature of the message m:

44



CHAPTER 4. THRESHOLD SIGNATURE SCHEMES

6. Each participant P; computes the group nonce as follows:

R= i:bj‘l - R;
Jj=1

7. Using the group nonce, R, the group verification key, (), and the message
m, the group challenge can be defined by each participant:

¢ = Hgg(Q || R [|'m)

8. Each P; computes their individual component of the group signature as
follows, sending the output z; to the signature aggregator (the same role as
defined within FROST in Section 4.3.2.2):

z; = cazk; + Z 761 (mod n)

J=1

Here, a; = Hage(L || Q) is the aggregation coefficient for P; and k; is the private
key for P;, as defined previously. In addition, b = Hpon(Q || {R1, Ra, ..., Ry} || m).
Finally, the group signature can be computed as follows:

9. The participant chosen as the signature aggregator can then compute the
group signature o = (R, z), given they are in possession of individual signing
component from all n signing participants, and where z is defined as follows:

n
=1

Now that we have given a brief description of MuSig2, we can now form a compar-
ison between this scheme and FROST. We’ll begin by describing the similarities
between the two schemes:

e Both MuSig2 and FROST produce a single joint signature that can be
verified using the standard Schnorr verification algorithm outlined in
Section 4.3.1. In relation to signing Bitcoin transaction, this is clearly a
desirable attribute as it means that nodes on the Bitcoin network only
need to use one verification algorithm to validation all transactions on
the blockchain, irrespective of whether the transaction was signed by one
party or multiple parties.
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Both schemes are equally efficient with respect to the number of signing
rounds — MuSig2 and FROST signing protocols are comprised of two com-
munication rounds, which can be deconstructed to a pre-processing round
and a signing round. Therefore, the signing protocols of both schemes
only require a round of communication if the participants have previously
signed a joint messaged and have opted to pre-compute nonces.

Both MuSig and FROST are able to provide concurrent security. That is,
when multiple signing sessions are opened simultaneously, both schemes
are not susceptible to Drijvers attack. Furthermore, both schemes are
also resistant to rouge-key attacks.

Finally, we will consider the differences between both signature schemes:

The most significant difference both schemes is that FROST is a thresh-
old t-out-of-n signature scheme, whereas MuSig2 is a n-out-of-n multi-
signature scheme. In other words, a collection of n wallets that utilise
the FROST protocol would be able to define a threshold ¢ < n such that
only ¢ or more participants are able to construct a valid signature. On
the other hand, MuSig2 requires all n participants who contributed to
the generation of the group verification key to participate in the signing
process. FROST is able to offer this threshold property by utilising Dis-
tributed Key Generation to allow each participant to obtain a Shamir
share, s;, of the group private key without any participant holding the
private key in its entirety. However, each participant using MuSig2 ob-
tains an additive share, a;k;, of the group private key as a result of its
key generation protocol. This additive share is not produced using dis-
tributed key generation — instead, it is simply a consequence of the group
verification key generation process in step three of the MuSig2 specifica-
tion. This becomes clear if we deconstruct this step as follows:

Q= a-Qi=)Y ak G=(uk+... +ak,) G=k G
i=1 1=1

Here, k, is the group private key, therefore it is clear that a;k; is the
additive share of k, owned by P;. As explained at the beginning of Section
2.2.3.2, an additive secret sharing scheme is restrictive as it requires all
parties with a share to participate in the recovery of the secret shared
value. As a result, MuSig2 is a more restrictive signature scheme than
FROST, as it requires all n parties to participate to produce a joint
signature (due to the use of additive secret sharing), whereas FROST
only requires that a threshold ¢ participate (due to the adoption of Shamir
secret sharing). Furthermore, FROST has the ability to function as a n-
out-of-n signature scheme simply by defining the threshold t = n during
the key generation protocol — MuSig2 does not have this kind of flexibility.
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e The process to generate individual signing and group (aggregate) verifi-
cation keys is much simpler in MuSig2, in a sense that each participant
can potentially generate them without real-time communication with the
other participants. This is possible because the process to generate indi-
vidual signing and verification keys is identical to the traditional Schnorr
signature scheme, and the group verification key is simply a sum of the
individual verification keys. Therefore, if a collection of parties wish to
define a wallet that supports MuSig2 and each party already knowns the
individual verification key of all other parties, the key generation phase
can be performed without any communication between parties. In con-
trast, participants in FROST key generation must always engage in a
round of communication with all other participants. This is because the
individual signing keys are Shamir shares of the group singing key, which
are generated using distributed key generation — a process that inherently
requires communication.

e With respect to private key storage, MuSig2 suffers from a single point
of failure. If a single private key associated with any of the participants
wallets is lost or stolen, the bitcoin associated with the shared wallet
will be irretrievable. This is because the group private key generation
process utilises additive secret sharing. As explained previously, FROST
does not suffer from this issues, as each participant is only in possession
of a Shamir share of the group signing key, therefore as long as only a
maximum of n —¢ Shamir shares are lost or stolen, the bitcoin associated
with a shared wallet implementing FROST will still be accessible.

4.3.4.4 Discussion

Now that we’ve compared FROST to three other mechanisms that offer similar
benefits, can it be said that FROST is the perfect replacement to native Bitcoin
multi-signatures, and further does it offer the best solution to the two inherent
weaknesses of transactions signed by a single party? In other words, is FROST
the best solution following the Bitcoin Taproot upgrade [59] to allow joint custody,
in way that is also resilient to lost or stolen shares / private keys? While there
isn’'t a clear-cut answer to these questions, as the term “best” is subjective and
depends on the exact requirements of the user, it is clear that FROST offers an
amalgamation of benefits from each three mechanisms, with very little downside.
In summary, we will draw our together our discussion from the previous three
subsection and make some final remarks.

Firstly, using Shamir Secret Sharing as described in Section 4.3.4.1 only offers
benefits in the single user setting. While utilising Shamir Secret Sharing to split
a mnemonic phrase clearly offers the user some reassurance that their bitcoin
will be recoverable in the event that a share (or many) are lost or stolen, the
fact that these shares must be recombined to sign a transaction means that the
added security provided by sharing the private key is forfeited as soon as this is
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performed. Using Shamir Secret Sharing in this way also offers no solution to joint
custody and transaction approval of bitcoin.

Next, native Bitcoin multi-signatures improve upon Shamir Secret Sharing in the
sense that bitcoin associated with a multi-signature wallet can be held in joint cus-
tody by the participants that initially defined the wallet. Alongside this, trans-
actions can be authorised without all private keys residing on a single device,
eliminating the single point of failure present when utilising Shamir Sharing as
described above. However, native multi-signatures are not private and can incur
substantial transaction fees as the number of participants increases, which may or
may not be an issue, depending on the user.

Finally, this leaves two options to consider — MuSig2 and FROST. From our dis-
cussion in Section 4.3.4.3, it is clear both schemes offer no obvious downsides that
make one scheme vastly superior over the other. FROST is undoubtedly more
flexible given that it allows for both t-out-of-n and n-out-of-n signature genera-
tion, whereas MuSig2 only allows n-out-of-n. Furthermore, FROST is much more
resilient in the event of lost or stolen private keys / shares, due to its underlying
use of Shamir secret sharing, as opposed to MuSig2 that utilises additive secret
sharing. However, MuSig2 allows for non-interactive key generation, and as such
it is more efficient and flexible in this regard. Therefore, if two wallets gave the
option to use FROST or MuSig2, it is a clearly trade-off between efficiency or
threshold support that a user must make when deciding which scheme to use.
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5 Conclusion

In this project, we have first and foremost provided an introduction to the concept
of secure multiparty computation, detailing how it was conceived and outlining
its core objectives. Following this, we have provided a detailed description of
three of the fundamental mathematical primitives that are commonly used to
underpin the efficacy of MPC protocols. With a view to ensure that readers from
a range of mathematical backgrounds are able to gain an understanding of these
primitives, and how they can be used to achieve the core objectives of MPC, we
have included worked examples and diagrams where appropriate. This builds upon
the literature, which is often inaccessible to the average reader due an excessive
use of mathematical proofs and a lack of concrete examples. To provide the reader
with an appreciation for the practical utility of secure multiparty computation, we
have also described two well-known real-world applications of MPC, illustrating
how the mathematical primitives described in Section 2 have been used to facilitate
privacy-preserving auctions [23] and privacy-preserving data analysis [28]. To
complement this, we have also briefly provided examples of current research being
undertaken into potential future applications of MPC. As a result, the first half of
this report provides a comprehensive overview of secure multiparty computation,
as required by our objectives.

Building on the foundation of knowledge gained from the first half of this report,
we have provided a detailed discussion surrounding a particular application of
MPC, namely threshold signatures. Similar to the structure of the previous sec-
tions, we first provided a overview of threshold signatures and how they differ from
traditional signatures. We then described how threshold signatures schemes could
be used to address two key issues in relation to digital asset self-custody, namely
private key management and joint ownership of bitcoin. In addition to this, we
also summarised the operation of the ZenGo wallet [50, 52|, a commercially avail-
able Bitcoin wallet that utilises threshold ECDSA. With the aim of applying the
knowledge attained in the first half of this report, we have then reviewed a state-
of-the-art threshold Schnorr signature scheme, namely FROST [5], adding value
to the subject area by performing the following tasks:

e We extended the specification from [5] to operate over an elliptic curve,
to align with any potential future implementations of FROST within a
Bitcoin wallet.

e We deconstructed the protocol specification from [5] to explain why cer-
tain steps are necessary and how FROST utilises MPC to achieve its
goals.

e We produced a proof-of-concept implementation of FROST in Python —
something that was not originally provided in [5].

e We compared FROST to three other techniques that could be (or are
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currently being) used in Bitcoin wallet implementations, with a particular
focus on the multi-signature signature scheme known as MuSig?2.

As a result of this review, we have demonstrated the utility of FROST when
applied to bitcoin custody and joint ownership, and have highlighted its potential
benefits in comparison to other techniques, with a particular emphasis on MuSig2.
Given the option to further extend our work on this project, we would spend the
time improving our proof-of-concept Python implementation of FROST to include
all verification steps and to potentially integrate a form of network communication
functionality, so that FROST key generation and signing could take place on
separate machines, as intended by the original specification in [5]. In the future, as
the awareness of MPC increases, we expect to see continued growth in the number
of applications implementing the techniques described in this report. However,
there is still work to do if we are to ever see the mass adoption and implementation
of threshold signature schemes, such as FROST, into Bitcoin wallets. This begins
with the standardisation of threshold signature schemes, a process that is currently
being undertaken by NIST in [78].
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Appendix

A EllipticCurve.py

class EllipticCurve():
def __init__(self,a,b,p,test=True):
self.a=a’%p
self.b=Db % p
self.p =p
self.test = test

if (4*a*x*3 + 27*b*x2) Y, p == O:
raise ValueError("Discriminant is zero modulo p.")

class Point():
def __init__(self,curve,P):
p = curve.p
self.x = P[0] % p
self.y = P[1] % p
self.curve = curve

if (curve.test):
self.__test__Q)

def __test__(self):
x = self.x
y = self.y
curve = self.curve

if ((x**3 + curve.a*x + curve.b -y*y) % curve.p) != O:
raise ValueError("This point is not on the specified curve.")

def __repr__(self):
return f"({self.x},{self.y})"

def __eq__(self,Q):
if (self.x == Q.x) and (self.y == Q.y):
return True

return False

def dbl(self):
x = self.x
y = self.y
p = self.curve.p
a = self.curve.a

if(y == 0):
return Neutral(self.curve)

den = pow(2*y,-1,p)

m = (3*x*x + a)xden % p
xd = (m*m - 2%x) % p
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yd = (-m*x(xd - x) - y) % p

return Point(self.curve, (xd,yd))
def __add__(self,Q):

if isinstance(Q,Neutral):

return self

x1 = self.x

yl = self.y
x2 = Q.x
y2 = Q.y

p = self.curve.p
a = self.curve.a

if x1 == x2:
if ((yl+y2) % p) == O:
return Neutral(self.curve)

else:
den = pow(2*yl,-1,p)
m = (3*x1*x1 + a)*den % p
else:
den = pow(x2 - x1,-1,p)
m = (y2 - yl)*den % p
x3 = (w*m - x1 - x2) % p

y3 = (m*x(x3 - x1) - y1) % p

return Point(self.curve, (x3,y3))

def __neg__(self):
return Point(self.curve, (self.x, self.curve.p-self.y))

def __sub__(self,Q):
return self + (-Q)

def __rmul__(self,n):
if n < O:
return ((-n)*self).__neg__()

if n ==
return Neutral (self.curve)

Neutral (self.curve)
self

=v i)
non

# Double—-and-add algorithm

while n > O:
if (m% 2 == 1):
Q=Q+R

n=n-1
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n=mn//2

if (m > 0):
R = R.dbl()

return Q

def get_x(self):
return self.x

def get_y(self):
return self.y

class Neutral (Point):
def __init__(self,curve):
self.curve = curve

def __eq__(self,Q):
if isinstance(Q,Neutral):
return True

return False

def dbl(self):
return self

def __add__(self,Q):
return Q

def __sub__(self,Q):
return Q.__neg__Q)

def __neg__(self):
return self

def __rmul__(self,n):
return self

B FROSTLib.py

from EllipticCurves import *
import secrets
from hashlib import sha256

rng = secrets.SystemRandom()

# The Secp256k1 prime

prime = int ("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F"

- 16)

# The order of Secp256kl
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order = int ("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AFA8A03BBFD25ESCD0364141",
- 16)

a=20
b=7
E = EllipticCurve(a,b,prime)

# Generate base point / generator of curve

base_x =
< int ("79BE667EFODCBBAC55A06295CES870B07029BFCDB2DCE28D959F2815B16F81798", 16)
base_y =
— int ("483ADA7726A3C4655DA4FBFCOE1108A8FD17B448A68554199C47D08SFFB10D4B8", 16)

G = Point(E, (base_x,base_y))

def generate_shamir_share(n,t):
poly = [rng.randint(1l,order) for party in range(t)]

secret = poly[0]

commit = secret*G

(]

shares

for i in range(1l,n+1):
y_coord = sum([poly[jl*(i**j) for j in range(0,len(poly))]) % order

shares.append (y_coord)
return shares, commit

def assign_shares(shares_list):
distributed_shares = [[] for i in range(len(shares_list))]

for i in range(len(shares_list)):
for j in range(len(shares_list)):
distributed_shares[i] .append(shares_list[j][i])
distributed_shares = [sum(shares) for shares in distributed_shares]

return distributed_shares

def generate_lambdas(party_indices):
lambdas = []

for party_index in party_indices:
not_party_index = party_indices[:party_indices.index(party_index)] +
— party_indices[party_indices.index(party_index)+1:]

numerator = 1

denominator 1
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def

def

def

for index in not_party_index:
numerator = numerator * index
denominator = denominator * (index - party_index)

denominator = pow(denominator,-1, order)
lambdas. append ( (numerator * denominator) 7% order)

return lambdas

generate_keys(n,t):

shamir_shares = []

commitments = []

for party in range(n):
share, commit = generate_shamir_share(n,t)
shamir_shares.append(share)
commitments.append (commit)

private_keys = assign_shares(shamir_shares)

public_key = Neutral(E)

for commit in commitments:
public_key += commit

return public_key, private_keys

H_1(1,m,B):

1_bytes = int.to_bytes(l, 32, "big")
m_bytes = m.encode("utf-8")

B_bytes = bytes()

for commitment_nonce in B:
for value in commitment_nonce:
B_bytes += int.to_bytes(value, 32, "big")

hash = sha256(1_bytes+m_bytes+B_bytes).digest()
return int.from_bytes(hash, "big") 7% order
H_2(R,Y,m):

R_bytes = int.to_bytes(R.get_x(), 32, "big")

Y_bytes = int.to_bytes(Y.get_x(), 32, "big")
m_bytes = m.encode("utf-8")

hash = sha256(R_bytes+Y_bytes+m_bytes) .digest()
return int.from_bytes(hash, "big") % order

generate_nonces (party_indexes):
nonces = []
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for party_index in party_indexes:
d = rng.randint(1,order)

= rng.randint(1,order)

= dx*G

= ex*xG

Mmoo
I

nonces.append([[d,D], [e,E]])
return nonces

def generate_B(nonces, party_indexes):

B =[]

for i in range(len(party_indexes)):

D
E

nonces[i] [0] [1] .get_x() # The z-coord is chosen.
nonces[i] [1] [1].get_x ()

B.append([party_indexes[i], D, E])
return B

def sign(m,participants,private_keys,group_public):
nonces = generate_nonces(participants)

B = generate_B(nonces, participants)
rhos = []

for party_index in participants:
rhos.append(H_1(party_index,m,B) % order)

R = Neutral(E)
for j in range(len(participants)):

D_i = nonces[j][0][1]

E_i = nonces[j][1][1]

R += (D_i + (rhos[jl*E_1))
¢ = H_2(R,group_public,m) % order
lambdas = generate_lambdas(participants)
z_shares = []
for j in range(len(participants)):

d_i = nonces[j][0] [0]

e_i = nonces[j][1][0]
rho_i = rhos[j]

lambda_i = lambdas[j]
key_i = private_keysl[j]
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z_shares.append((d_i + e_i*rho_i) + lambda_i*key_i*c % order)
return R, sum(z_shares) % order

def verify(R,z,m,group_public):
¢ = H_2(R,group_public,m) % order

R_v = (zxG)+((-c)*group_public)

return R_v

C FROST.py

from FROSTLib import *
from EllipticCurves import *
import argparse

# The Secp256kl prime

prime = int ("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F"
- 16)

# The order of Secp256k1

order = int ("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AFA8A03BBFD25E8CD0364141 ",
- 16)

a=20
b=7
E = EllipticCurve(a,b,prime)

parser = argparse.ArgumentParser(description="Proof-of-concept implementation
— of FROST signature scheme.")

parser.add_argument ("mode", type=str, help="Indicate the mode FROST should

— execute in -- i.e., key generation (G), signing (S), verification (V) or
<~ both (A).™)

parser.add_argument ("-n", type=int, help="Number of entities participating in
— key generation.")

parser.add_argument ("-t", type=int, help="The number (threshold) of entities
— that must participate in the signing protocol to generate a valid

— signature.")

parser.add_argument ("-s", type=int, nargs='+', help="The Shamir shares of each
— participant (in order) associated with the group signing key, specified as
— space seperated integers.")

parser.add_argument ("-m", type=str, help="The message to be signed.")
parser.add_argument ("-p", type=int, nargs='+', help="The indices representing
— the participants that wish to jointly sign the message, specified as a

— sequence of space seperated integers.")

parser.add_argument ("-q", type=int, nargs='+', help="The group verification

— key, specified as space seperated integers, the first and second integer
— representing the x-coord and y-coord respectively (e.g. R_x R_y)")
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parser.add_argument ("-r", type=int, nargs='+', help="The group nonce, specified
< as space seperated integers, the first and second integer representing the
— x-coord and y-coord respectively (e.g. Q_x Q_y).")
parser.add_argument ("-z", type=int, help="The group signature response, z.")

args = parser.parse_args()
# Assign user inputs to wvariables

mode = args.mode
parties = args.n

shares = args.s
threshold = args.t
message = args.m
participants = args.p
group_response = args.z
group_public = args.q
nonce = args.r

if args.q is not None:
group_public = Point(E, (group_public[0],group_public[1]))

if args.r is not None:
nonce = Point(E, (nonce[0] ,noncel1]))

if mode == "A":
if parties is None or threshold is None or participants is None or message
< 1s None:
print ("\nThis mode ("+mode+") of FROST requires the following
< parameters: n, t, p, m. Type script.py -h for more information.\n")
exit ()
elif mode == "G":
if parties is None or threshold is None:
print ("\nThis mode ("+mode+") of FROST requires the following
< parameters: n, t. Type script.py -h for more information.\n")
exit ()
elif mode == "S":
if shares is None or message is None or participants is None or
< group_public is None:
print ("\nThis mode ("+mode+") of FROST requires the following
< parameters: p, s, m, q. Type script.py -h for more information.\n")
exit ()
elif mode == "V":
if nonce is None or group_response is None or message is None or
< group_public is None:
print ("\nThis mode ("+mode+") of FROST requires the following
< parameters: r, z, m, q. Type script.py -h for more information.\n")
exit )
else:
print ("\nThis mode ("+mode+") is not valid - please specify key generation
— (G), signing (S), verification (V) or all (A) mode.\n")
exit ()

if mode == "G" or mode == "A":
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group_public, shares = generate_keys(parties,threshold)

# ———— Terminal Output -----

print ("\n")

print ("----- Key Generation ----- ")

print("\n")

print ("Number of parties:", parties)

print ("Singing threshold:", threshold)

print ("\n")

print ("Group Verification (Public) Key:", group_public)
print ("\n")

for party in range(parties):
print ("P_"+str(party+1)+"'s Shamir Share:", shares[party])

print ("\n")

print ("\n")

if mode == "S" or mode == "A":

signing_keys = []

if mode == "A":
for party_index in participants:
signing_keys.append(shares[party_index-1])
else:
signing_keys = shares

nonce, group_response =
— sign(message,participants,signing_keys,group_public)

# - Terminal Output ————-
if mode == "S":

print ("\n")
print ("----- Signing ----- ")
print("R:", nonce)
print("z:", group_response)
print ("\n")

if mode == "V" or mode == "A":

# - Vertification —-----—

nonce_v = verify(nonce,group_response,message,group_public)
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if mode == "V":
print("\n")

print ("----- Verification----- ")

print("R_v:", nonce_v)

print("Signature Verified (R == R_v):", nonce == nonce_v)
print ("\n")
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