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Executive Summary  

In the energy industry, power theft has been a constant concern for many countries. With the 

development of technology, the means of electricity theft also reflects the characteristics of advanced 

and concealed. However, the emergence of artificial intelligence technology has also elevated the 

combat against electricity theft to a new level. The classical machine learning has been proven to be 

effective in electricity theft detection (ETD). Instead of further corroborating the feasibility of them, 

this project further explores the usability of advanced models in the emerging field of deep learning. 

Recent academic journals and research results show that advanced models and algorithms based on 

convolutional neural network (CNN), long short-term memory (LSTM), and generative adversarial 

network (GAN), among others, are also effective and even more flexible and efficient in ETD. 

 

This project uses a data set of electricity consumption of real users, which contains data and labels of 

normal users as well as electricity theft users, i.e., a supervised learning approach is used to deal with 

the binary classification issue. The performance of the target model on the unseen data set is 

evaluated by training the model and algorithm, i.e., the performance of the model in identifying 

normal electricity users and electricity theft users. During the project, some advanced and effective 

deep learning techniques are also well applied and show good results. In terms of data pre-processing, 

techniques such as k-nearest neighbors (KNN) imputation processing for missing values, interquartile 

range (IQR) processing for outliers and borderline-synthetic minority oversampling technique 

(Borderline-SMOTE) processing for imbalance classification were successfully applied to the project. 

Also, the clear visualization analysis provides a good basis for modeling. Three models were 

successfully built, with multilayer perceptron (MLP) as the baseline model, CNN & LSTM 

(CNN-LSTM) as a comparable model and convolutional LSTM (ConvLSTM) as a novel model. The 

model convergence is accelerated by optimizing hyperparameters such as dropout and learning rate. 

And more comprehensive metrics are used on the unseen data to evaluate the feasibility, accuracy, 

and robustness of the model in identifying electricity theft users.  

 

In this project, ConvLSTM outperformed the other models with accuracy, loss, precision, recall, 

F1-score, Cohen’s kappa, receiver operating characteristic-area under the curve (ROC-AUC) and 

precision-recall-AUC (PR-AUC) of 0.984, 0.089, 0.984, 0.985, 0.984, 0.969, 0.993, 0.991 

respectively. In addition, ConvLSTM supports multi-dimensional electricity data input for better 

extraction of time series features, and batch normalization technology supports direct transformation 

of raw electricity data in model compilation without tedious and time-consuming data 

pre-transformation. This also demonstrates that ConvLSTM also shows a lot of room for 

improvement in terms of flexibility of model architecture adjustment and efficiency of data 

processing. This can also better improve the timeliness of power companies in combating electricity 

theft, and enable them to adjust their detection deployment in a timely manner in an environment 

where theft methods are constantly changing. 

 

A journal version of this project report is pending submission to International Transactions on 

Electrical Energy Systems for review. 
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1. Introduction 

1.1 Background of Smart Grid Development 
The smart grid has made great progress as a mainstream trend in the development of electricity 

networks. It can effectively integrate the electricity consumption behavior of its service users with 

intelligent communication and monitoring [1]. With the development of the smart grid, an evolution 

from automatic meter reading (AMR) to advanced metering infrastructure (AMI) has been achieved. 

AMI is an important component of the smart grid, which makes possible two-way communication 

between the electric utility and the customer. It also enables remote meter reading and access to data 

in an efficient and accurate manner [2]. As one of the essential devices in AMI, the smart meter plays 

a key role in the construction of smart grid. It can obtain information from the end-user side and 

measure the energy consumption of users in real time, which also greatly improves the efficiency of 

power supply enterprise's electricity consumption information collection [3]. 

 

A typical AMI is a mix of powerline communications, radio frequency networks, and point-to-point 

devices that contain direct cellular modem devices for communications. All devices are connected 

via an IP-based backhaul communication network. As shown in figure 1: 

 

 
 

Figure 1: AMI instance layout diagram -adapted from [26] 
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1.2 The Current State of Electricity Theft 
However, energy theft has always been an intricate problem. Currently, electricity theft has become 

one of the major causes of non-technical losses (NTL) in the grid [4]. One of the reasons for the rapid 

growth of AMI over the past few years is to reduce the NTL caused by electricity theft [26]. It has also 

diversified with the development of smart grids, evolving from traditional malicious tampering with 

physical metering devices to sophisticated remote computer penetration. The following figure 2 shows 

the different modes of electricity theft: 

 

 

 
Figure 2: Different attack modes of electricity theft - adapted from [26] 

 

According to Northeast Group, LLC. (2017) [27] report, the power supply sector worldwide loses 

about $96 billion a year due to non-technical losses, which include electricity theft, fraud, etc. For 

example, in India, the annual loss due to electricity theft is about $4.5 billion [29]. The 2020s will be a 

critical period for the development of the global smart grid. Because North America, Western Europe 

and other countries have been on the road of building smart grid. For emerging markets, however, this 
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is one area of massive investment. The report also points out that the 50 emerging markets are well 

placed to invest more than $88 billion over the next few years [28]. This is undoubtedly a signal to 

promote the development of global AMI layout, but also implies the determination of the national level 

in the governance of NTL in the power grid. As shown in figure 3: 

 

 

 
Figure 3: Emerging markets AMI forecast by region (cumulative) [28] 

 

From the perspective of information security, electricity theft seriously compromises the integrity and 

availability of the power transmission process [5]. It not only causes enormous property damage, but it 

is also a criminal offence. Electricity consumption data is given value in the society and belongs to the 

assets of the residents and the power supply sector. 

 

1.3 Motivation 
The development of AMI in the smart grid has also contributed to the diversity of detecting electricity 

theft. It provides a large amount of data support while improving energy monitoring. In the big data 

environment, machine learning has also been introduced to the problem of electricity theft. For 

example, Jamacia Public Service Company Ltd. (2019) has applied machine learning to combat 

electricity theft [30]. Electricity theft is a form of damage to electric assets, which is reflected in the 

data as an abnormal state of electricity use. The process of detecting abnormal electricity usage is 

essentially a process of risk assessment as well. The process of risk assessment can be summarized 

into three stages: risk identification, risk analysis and risk evaluation [5]. However, classical machine 

learning and deep learning can significantly reduce the time of risk assessment and accurately combat 

electricity theft by, for example, feature engineering and modeling of electricity consumption data sets 
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containing electricity theft features, which also means an optimization of manual detection methods 

[6]. 

 

At the same time, as previously mentioned, the purpose and methods of electricity theft today are tied to 

technological developments, such as the extraordinary popularity of bitcoin mining. A report by Criddle 

(2021) reveals the frightening reality that Bitcoin uses more electricity each year than the entire country 

of Argentina [44]. News about bitcoin power theft is commonplace on the Internet, and fighting this 

emerging field of theft is not enough with manual methods alone. 

 

After the successful application of classical machine learning in ETD, some ETD modeling research has 

gradually emerged in the field of deep learning. However, this is one of the motivations for this project, 

hoping that some progress can be made in ETD modeling by studying more advanced algorithms in deep 

learning. Since everyone can participate in bitcoin mining and it can pose a threat of electricity theft. 

Then this project also hopes to make more people aware of advanced ways to combat electricity theft by 

demonstrating deep learning ETD modeling and analysis. 
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2. Summary of Literature Review in Machine Learning ETD 

2.1 Introduction to Neural Network 
 

Multilayer Perceptron  
MLPs are the basis of artificial neural networks. Perceptrons are single neuron models that are likewise 

the building blocks of complex neural networks. They have weighted input signals and use activation 

functions to generate output signals [46]. A simple neuron is shown in the following figure 4: 

 

 

 

Figure 4: The architecture of neuron [46] 
 

Neurons are arranged to form a network of neurons with a topological structure. A row of neurons is 

called a layer, and a network can have more than one layer. These include:  

1. Input layer: the underlying layer from which the data set gets its input.  

2. Hidden layer: a simple network structure in which one neuron in the hidden layer directly outputs a 

value.  

3. Output layer: it is responsible for outputting a value or vector corresponding to the desired format of 

the modeling problem. For example, a regression problem may have only one output neuron and may 

have no activation function. While a binary classification problem may have only one output neuron 

and use a Sigmoid activation function to output a value between 0 and 1. This is transformed into a 

classification value by the setting of a threshold value. The simple structure is as following figure 5: 
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Figure 5: The architecture of MLP [46] 

 

In addition, to prevent overfitting, dropout [48] can be added to the neural network model, which is 

also a regularization technique. It is a technique that ignores randomly selected neurons during the 

training process. They are dropped out randomly. This means that their contribution to the activation 

of downstream neurons is temporarily removed on the forward channel, and any weight updates are 

not applied to neurons on the backward channel [24]. 

 

Convolutional Neural Network (CNN)  

CNN is another powerful artificial neural network. It retains the spatial structure of the problem and 

has been developed for target recognition problems, such as computer vision. 

 

There are three types of layers in a CNN [46]:  

a. The convolutional layer. It mainly has filters and feature maps. The filter is essentially the neuron of 

the layer with weighted input. The size of the output is a square receptive field. In the network 

structure, the convolution layer takes the input from the feature map of the previous layer. And the 

feature map is the output of the filter of the previous layer is applied. 

b. Pooling layer. The pooling layer downsamples the feature map of the previous layer. It is relatively 

simple in structure and takes the average or maximum of the input values to create its own feature 

map. 

c. Fully connected layer. This layer is used at the end of the network structure after feature extraction 

and integration by the convolution and pooling layers. These layers can include nonlinear activation 

functions and Softmax activation and perform prediction of the model. Its structure is as following 

figure 6: 
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Figure 6: The architecture of CNN [53] 

 

 

Zheng, Yang, Niu, Dai, & Zhou (2017) [12] used a Wide and Deep convolutional neural network in the 

detection model of electricity theft. The framework mainly consists of a wide component and a deep 

CNN component. A fully connected layer is used in the wide component. The cases of normal 

electricity usage in the data set show periodicity, while the data of electricity theft is less periodic. The 

cases learn features by memorizing 1-D time series. the CNN is robust to the location and orientation 

of the target in the scene, and the principle also uses 1-D sequences. That means invariance to the 

specific position of the feature. The case uses rectified linear unit (ReLU) as the activation function, 

which activates only positive values. In the back propagation process, each cell calculates its weight 

based on the loss values sent from the upper layers. A deep CNN component that processes electricity 

consumption data in two dimensions depending on the number of days. The component consists of 

multiple convolutional layers, a pooling layer and a fully connected layer. The convolutional layer 

contains unique filters, and the activation function is selected as ‘tanh’. The pooling layer is selected as 

maximum. The fully connected layer uses a logistic loss function, which should be 

'binary_crossentropy'. The activation function is chosen as Sigmoid.  

 

Recurrent Neural Network (RNN) and Long Short-term Memory (LSTM) Network 

RNN is designed for sequential problems and their connections have loops that add feedback and 

memory to the network over time. Long short-Term memory (LSTM) network is a recurrent neural 

network trained by time back propagation (LSTM models include stacked LSTM, CNN-LSTM, 

bidirectional LSTM, etc). It has a unique formulation that avoids the problem that other RNNs cannot 

be trained and scaled. Moreover, it overcomes the problems of gradient disappearance and gradient 

explosion, truncated backpropagation through time (TBPTT) is a key concept in the training LSTM 

model. Unlike neurons, the memory blocks of LSTM networks contain states and outputs and are 

connected in layers. Each of these blocks has three gates: a forget gate, an input gate, and an output 

gate [21]. Also, a sigmoid activation function is used to control whether they are triggered or not. 

Sliding window is a method for transforming time series into supervised learning. Its structure is as 

following figure 7: 
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Figure 7: The architecture of LSTM [52] 

 

CNN-LSTM 
The CNN-LSTM framework consists of feature extraction of input data using CNN layers combined 

with LSTM to support sequence prediction. It was essentially developed for visual time series 

prediction problems and for applications that generate textual descriptions from image sequences [23]. 

The simple structure is as following figure 8: 

 

 

 

Figure 8: The architecture of CNN-LSTM [46] 
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Hasan, Toma, Nahid, Islam & Kim (2019) [6] and Madhure, Raman & Singh (2020) [22] use a 

CNN-LSTM model in the anomaly detection model. Case [6] also solves a binary classification 

problem with normal electricity consumption and theft data as labels. It includes seven hidden layers 

(the first four hidden layers perform active operations), each of which consists of twenty feature sets. 

The rest of the hidden layers are LSTM. the ReLU activation function is used in the product 

convolution layer. The maximum value is selected for the pooling layer. The SoftMax function is 

selected after the operation. In the LSTM model, Case [22] adds a Dropout layer after each LSTM 

layer. This can simply and effectively prevent the model from overfitting. The optimizer chooses 

Adam to update the network weights. Two fully connected layers were placed at the end of the 

network to make predictions through the network. One of the layers has 24 neurons and a linear 

activation function is chosen, and finally an output layer contains 1 neuron.  

 

2.2 The Current Situation of Machine Learning in ETD 
Predictive modeling is a significant concept in machine learning, where different data are understood 

by models. The benefit of predictive modeling is that it allows the development of models that make 

the most accurate predictions, rather than focusing on explaining why a model makes a prediction. 

 

In classical machine learning, some algorithmic modeling can also yield good metrics on electricity 

theft problems. For example, linear algorithms: Logistic Regression (LG) and Linear Discriminant 

Analysis (LDA), nonlinear algorithms: KNN, Naive Bayes (NB), Classification and Regression Trees 

(CART) and Support Vector Machines (SVM). They can model and handle classification problems. 

Also, in dealing with regression problems, linear algorithms: Linear Regression, Bridge Regression, 

Least Absolute Shrinkage and Selection Operator (LASSO) Linear Regression and Elastic Net 

Regression, nonlinear algorithms: KNN, CART and SVM. They can also be used for related modeling 

problems. As summarized by Hasan et al. (2019) [6], algorithms of classical machine learning show 

good performance on different electricity consumption data set. In addition, ensemble algorithms can 

also improve the accuracy of the dataset. For example, Bagging (Bagged Decision, Random Forest and 

Extra Trees), Boosting (AdaBoost and Stochastic Gradient Boosting) and Voting. 

 

Along with the development of machine learning and smart grid, deep learning as a branch of machine 

learning is also widely used in industry. Neural networks as a concept of deep learning are also widely 

used in computer vision, speech recognition and anomaly detection and other aspects [6]. MLP, CNN, 

RNN, and hybrid models for modeling can also cover power-use data set and deal with regression and 

classification problems [7]. The development of deep learning is not a complete replacement for 

classical machine learning, but there is a difference in the details that both focus on in terms of ideas 

for dealing with different data sets. Some limitations of traditional machine learning are highlighted in 

the processing of different data. Dorffner, G. (1996) shows that neural networks are robust to noise in 

the input data and mapping functions and can even support learning and prediction in the presence of 

missing values. At the same time, neural networks do not make strong assumptions about the mapping 

function and can easily learn linear and nonlinear relationships [8]. 

 

From another perspective, it can also be understood the electricity consumption data set as a time 

series forecasting problem [20]. Unlike simple classification and regression problems, time series 
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problems add sequential complexity or time dependence between observations. Deep learning neural 

networks are able to automatically learn arbitrarily complex mappings from inputs to outputs and 

support multiple inputs and outputs. CNN support effective feature learning. It provides efficiency and 

better performance in identifying, extracting, and refining useful features from raw data [9]. CNN 

achieves this by directly manipulating raw data (e.g., raw pixel values) rather than deriving 

domain-specific or handcrafted features from raw data. RNN, such as LSTM, are used for complex 

natural language processing problems. This capability can be used for time series prediction. LSTM 

networks support efficient learning of temporal dependencies [10]. These models can also be used to 

advantage by mixing them, such as hybrid models like CNN-LSTM and ConvLSTM.  
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3. Project Outline 

3.1 Project Process Description 
The project is divided into five main phases:  

 

1. Data pre-processing. Data cleaning, including missing value removal and filling (KNN Imputation), 

and outlier screening (IQR). 

 

2. Data visualization. Visualization of the raw data set through histograms, curves, Pearson’s 

correlation coefficient (PCC), autocorrelation function (AFC) and seasonal and trend decomposition 

using loess (STL decomposition), and preliminary examination of the relationships between the data. 

 

3. Imbalance classification. Generate more realistic data of electricity thieves by Borderline-SMOTE. 

 

4. Data transformation. Normalization is performed before the data is fed into the model, which also 

includes the use of batch-normalization directly in the model. 

 

5. Model building. Three models are built for comparison, which include MLP (baseline), CNN-LSTM 

and ConvLSTM. For each model split training, validation and testing data set. The optimal model is 

maintained by optimizing feature extraction, hyperparameters and functions, etc. 

 

6. Comparative analysis of performance metrics. The optimal model is determined by a comprehensive 

evaluation of the models on the test data set, which includes accuracy, loss, confusion matrix, F1-score, 

recall, precision, Cohen’s kappa, receiver operating characteristic-area under the curve (ROC-AUC), 

precision-recall-AUC (PR-AUC), and related visualization results. 

 

To express the project process more clearly and intuitively, please see the following figure 9: 
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Figure 9: Project process 
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3.2 Related Configuration of Project Platform 
 

 

Hardware Configuration 

Computer model: MacBook Pro (16-inch, 2019) 

Operating system: macOS Big Sur (Version 11.2.1) 

Processor: 2.6 GHz 6-Core Intel Core i7 

Memory: 16 GB 2667 MHz DDR4 

Graphics: AMD Radeon Pro 5300M 4 GB 

Cloud GPU (Paperspace): Free-GPU, 30GB RAM, 8 CPUs 

Software Configuration 

Python (Version 3.7.6) 

Anaconda Navigator (Version 1.10.0) 

Jupyter Notebook (Version 6.1.4) 

Microsoft Excel (Version 16.46) 

Major Python Library 

Scipy (Version 1.5.2) 

Numpy: (Version 1.19.4) 

Matplotlib: (Version 3.3.2) 

Pandas: (Version 1.1.1) 

Sklearn: (Version 0.23.2) 

TensorFlow (Version 2.4.0) 

Keras (Version 2.4.3) 

 

Table 1: Project platform configuration   
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4. Problem Analysis and Data Preparation 

The input target for machine learning is data. Before applying a data set to machine learning 

modelling, data preparation is the first and significant aspect. Different experimenters understand and 

process data set differently, which can make a difference to the state of the data set. The state of the 

data set has a direct impact on the performance measures, such as accuracy, of the machine learning 

model predictions. In real life, the data set obtained by experimenters is often incomplete and 

accurate. For example, the electricity consumption data required for this project is often erroneous 

and noisy [12]. The process of data preparation can also be referred to as pre-processing of the data, 

which is a data mining technique [31]. Before predictive modelling, it still needs to perform 

important aspects such as data cleaning, dealing with imbalanced classification, data transformation 

and feature extraction. This will make the data fit the model and algorithm more effectively and 

reduce the negative issues of model failure or low accuracy during modelling due to data leakage or 

over-fitting and similar issues. At the same time, this project is still guided by the data for the 

modelling prediction problem. Therefore, improving data accuracy and the accuracy of model 

predictions remains a vital issue to always think about. 

 

Data preparation includes but is not limited to: 

1. Preliminary and visual analysis of data. Statistical as well as graphical and charting methods are 

used to analyse data for differences, anomalies, potential patterns, etc. 

2. Data cleaning. Imputation of missing values, outlier and anomalous data processing, etc. 

3. Imbalanced classification. When dealing with classification problems, the data set often has an 

unbalanced number of variables in each category, which can affect the experimenter's understanding 

of the evaluation metric of the machine learning model. Therefore, this requires a balancing of the 

predicted categories. 

5. Data transformation. Machine learning requires that the input variables be numerical and that 

different algorithms have different levels of accuracy with respect to the data. Operations such as 

standardization or normalisation of the data need to be performed. 

 

In summary, when acquiring a data set, the experimenter should use as much experience, expertise 

and machine learning techniques as possible to analyse and transform the raw data into a better fit for 

the model. This is not only a process of transforming the raw data into machine learning 

understandable data, but also a process of transforming the raw data into something that is as 

understandable as possible for the experimenter. 

 

4.1 Preview of Raw Data Set 
The data set selected for this project was obtained from real electricity consumption data published 

by the State Grid Corporation of China (SGCC) [12]. The data set contains the daily electricity 

consumption in kilowatt hour (kWh) of 42,372 customers between 1 January 2014 and 31 October 

2016 (1034 days). 38,757 of these customers are normal electricity users (labeled 0) and 3,615 are 

customers who have been identified as electricity thieves (labeled 1).  
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See Appendix A for a detailed description of the data set. 
 

Anomalies in the data can be found by looking at the statistical information in the raw data: 

 

1. The Count of daily electricity consumption for all users varies greatly, and some of the 25th 

Percentile is almost zero, indicating that the data set contains a large number of missing or zero 

values. 

 

2. The maximum values of daily electricity consumption are unusual, with some of the maximum 

daily consumption exceeding 10,000 kWh, however, the data and averages of daily electricity 

consumption are very much in line with the habits of residential electricity consumption.  It can be 

analysed that this data set should contain a small amount of information on industrial or commercial 

electricity consumption, or that the data collection is anomalous due to a malfunctioning energy 

metering device. The billing and data collection methods for industrial electricity consumption also 

differ from those for general electricity consumption, as do the patterns of behaviour and patterns of 

electricity consumption between the two [32]. However, these users will be retained in order to 

maintain the authenticity of the data set and to validate the compatibility of the model. This issue can 

be dealt with at a later date when the data is transformed. 

 

3. The standard deviation fluctuates over time. This indicates that there are seasonal fluctuations in 

this electricity consumption, or that it is affected by outlier.  

 

The main anomalous states of the data set can be summarised as following table 2: 

 

SGCC data set 
Description Quantity Class Tag Time of Duration Number of Days 

Normal users 38757 0 
1 January 2014 to 31 October 2016 1034 Electricity theft user 3615 1 

Total user 42372 / 
 

Total Number of Data Amount of Missing Values Amount of Zero Values 
43812648 11233528 5788603 

 
Table 2: Raw data status 

 

A summary of the anomalies in the raw data reveals that missing values account for 25.6% of the 

total data, and zero values account for 13.2% of the total, for a total of 38.8% of the anomalous data. 

As electricity consumption contains time continuity, it is time series data. Therefore, in order to 

maintain the integrity and inherent regularity of the data structure, zero values should also be 

classified as missing values and filled in. 
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4.2 Electricity Data Cleaning 
Data cleansing is an important branching aspect of machine learning, where messy data content and 

structure can directly lead to biased analysis and failed predictions. As Kazil & Jarmul (2016) [34] 

point out, data cleaning is not the most appealing aspect of machine learning, but it does form an 

essential part of data collation wrangling. The analysis of the data can reveal anomalies such as 

missing values and outliers, or even redundant data with poor data correlation. The screening, analysis 

and processing of these anomalies are what needs to be done in this session. 

 

4.2.1 Missing Data Filtering 
Missing data and anomalies in the SGCC data set can arise for a number of reasons, such as a failure 

of the metering facility during collection, transmission or storage. Firstly, there are a large number of 

missing and zero values in the data set (hereafter referred to as missing data). It can be counted the 

proportion of missing data per user on a user-by-user basis and set a rejection baseline of 3%, i.e. users 

with more than 1 month of missing data will be removed. This is to retain the maximum authenticity 

and objectivity of the raw data and model results, taking into account the experimental time required 

for the project and the performance of the experimental equipment. The minimum threshold of missing 

data is also used for monthly data in order to retain certain characteristics of the raw data. 

 

After filtering the users according to the proportion of missing data, 8,883 users were obtained. Of 

these, 8,275 were normal users (labeled 0) and 558 were electricity theft users (labeled 1). The final 

data dimension was: daily electricity consumption data (kWh) for 8,883 electricity users between 1 

January 2014 and 31 October 2016 (1,034 days). 

 

4.2.2 Missing Data Imputation 
In machine learning, missing data imputation is a method for dealing with missing data [35]. It can 

replace missing data in a data set after identifying the missing values. The study cases [12] [13] [14] 

[15] [16] use the method of linear interpolation to deal with missing values in the data pre-processing 

stage, and combine it with the "three-sigma rule of thumb" to deal with outliers. 

 

Firstly, in terms of missing values, it should be considered the authenticity of the replacement data as 

well as preserving the integrity of the data results. The data set used for this project involves 

continuous missing data, so KNN (k-nearest neighbour) imputation is a more efficient method. Its 

algorithm is based on similarity and relies on a distance metric, the default of which is the Euclidean 

distance metric [11]. As stated by Beretta & Santaniello (2016) [36], KNN imputation is effective for 

handling missing values in continuous and ordered data, and its imputation accuracy and reduction of 

statistical errors are typically better than 1NN (e.g., two neighbouring data). The main point is that the 

imputed values are the actual values that occur, rather than the constructed values, which also allows 

for better preservation of the authentic data structure. This can be achieved using the KNNImputer 

class in the Scikit-learn library, with a default of n_neighbors of 5. After processing the missing values, 

it can be transposed the data and view a statistical description of the data set on a user-by-user basis, as 

shown in figure 10: 
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Figure 10: Descriptive statistics of missing values are processed (overview) 
 

Now that there are no more missing data in the data set, outliers need to be identified next. Outliers are observations that are different from the 
mainstream data in that they are unique, rare or do not match in some way [37]. However, outliers may exist as 'false' outliers. For example, in a 
particular experiment, age needs to be used as the observed variable. Suppose that the age variable in some samples appear to have a value of 
1000, which is clearly a true outlier that can be judged by common sense. Outliers in different fields require a combination of experience, 
common sense and statistical methods to identify the true outliers. In the case of electricity consumption data, however, trends in electricity 
consumption are characterised by sharp, peak, flat and valley, as well as seasonal and holiday influences that can result in 'false' outliers. 
Because fluctuations in electricity consumption data may be rare or unique, but are real and normal values, different households also have 
different characteristics. As this data set is used for binary classification, it requires trends, underlying patterns or seasonal characteristics to 
distinguish between electricity-theft user and normal electricity user. For each customer over a period of 1034 days, empirical and statistical 
analysis can be combined to treat the true extreme outliers and retain the 'false' outliers. 
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In this step, boxplot allows for better screening of outliers. Boxplot can also be called 
Box-whisker Plot. It actually uses the quantile of the data to identify the outliers in it. The 
boxplot shows the distribution of data based on a summary of five numbers (minimum, first 
quartile (Q1), median, third quartile (Q3), and maximum) and the maximum value is Q3 + 
1.5*IQR and the minimum value Q1 - 1.5*IQR [38]. This is shown in figure 11:  

 
Figure 11: Description of boxplot [38] 

 
 

However, due to the characteristic nature of electricity consumption data, the statistics can be 
conducted in such a way as to create 'false' outliers. According to Dawson (2011) [39], Q3 + 
1.5*IQR/Q1 -1.5*IQR can be defined as a minor or moderate outlier and Q3 + 3*IQR/Q1 
-3*IQR as an extreme outlier. By screening the minor and extreme outliers for all users over 
a period of 1034 days, a partial sample is shown in figure 12 and 13:
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Figure 12: Minor outliers over 1034 days (1.5*IQR) 

  



 27 

 
Figure 13: Extreme outliers over 1034 days (3*IQR) 
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By comparing and observing the four sample users, it can be seen that the number of extreme 
outliers is reduced compared to the number of minor outliers, but still has a certain number of 
extreme outliers. A preliminary analysis can first be made by electricity consumption. For 
example, in 'Normal user 4', the boxplot shows anomalies, with one data greatly deviating from 
the data group with a value of 10,860.69 kWh per day. Combined with the overall customer 
electricity consumption trend and practical experience analysis, such a large discrepancy is 
unusual or objectively non-existent in real life and would be due to a fault in the collection or 
statistical equipment. It can treat outliers such as these as real outliers to be dealt with. The 
observation of other sample customers shows that the theoretical maximum value of extreme 
outliers is no more than 43 kWh per day. This can be explained in terms of behavioural 
characteristics of electricity consumption, where there is self-subjectivity in consumption and 
where the data set also contains suspected commercial or industrial electricity users or 
electricity thieves. So, such outliers can be ignored, as some minor or moderate outliers it is 
objectively present.  
 
Removing them will certainly make the machine learning results more accurate, but this 
seemingly good result may be false and does not reflect the most realistic and objective results. 
So, a more sensible approach is to combine the results of the statistics with the analysis of 
objectively existing electricity consumption behaviour and daily electricity consumption 
characteristics (for example, actually comparing the data on the basis of the statistics to see if 
the average or peak interval of electricity consumption per household over 1034 days shows 
extremes with outlier multiples). Along these lines, all objectively existing outliers need to be 
retained and the true extreme outliers removed wherever possible. 
 
After identifying the extreme outliers, the actual number of outliers to be removed is 235, 
which are characterised by deviations of several hundred or even a thousand times from the 
main data set. After the initial data cleaning, the data visualisation can be analysed and outlined 
using a more realistic data set. 
 

4.3 Electricity Data Visualization 
More detailed analysis of the data will allow machine learning predictions to be presented with 
better results. The visualisation of the data allows the underlying cyclical patterns and trends 
within the data set to be more clearly presented, and allows the difference between normal and 
theft users to be better differentiated. The visualisation process also provides more ideas for 
later data feature extraction and provides a better basis for predictive modelling. Here, the 
combination of Matplotlib and Seaborn libraries in Python can enhance the plotting effect. 
 
Firstly, the data set contains two categories of normal users and theft users. Due to the sheer 
size of the data dimensions, representative data can be selected, the respective total average of 
the two categories of user data for analysis. The following figure 14 and 15 are available for 
both categories of users on a yearly and quarterly basis: 
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Figure 14: Average annual electricity consumption 
 
 

 
 

Figure 15: Quarterly average electricity consumption 
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By looking at the two graphs, it can first be seen that the average electricity consumption in the 
fourth quarter of 2016 was very small. This is because there is only one month of data for the 
fourth quarter of 2016, so this anomaly can be ignored. However, in the yearly graph it can be 
seen that the average electricity consumption of electricity thieves is more than twice that of 
normal users, while the fluctuations between normal and total users are small and have a stable 
ratio. The quarterly graphs also show that the fluctuations and ratios between normal and total 
customers are very regular. It is worth noting that in the third quarter of each year there is a 
peak in electricity consumption for both categories, which is very much in line with real life. 
This is because June to September is the summer months in China, the peak period for air 
conditioning [32]. However, electricity theft users still maintain a high average electricity 
consumption in the quarterly graph and the trend is upwards every year. This is in stark contrast 
to the smooth cyclical nature of normal users. This also reflects the fact that the behavioural 
characteristics of electricity theft users can make some difference.  
 
Due to the complexity and concealment of electricity theft in reality, the ever-evolving ways in 
which electricity is stolen dictate that the final data collected on electricity consumption is 
diverse. The total amount of electricity consumed is sometimes not directly used to judge the 
existence of theft, but should be explored in more detail. The following graph compares the 
average daily electricity consumption of two types of customers over a period of 1034 days, as 
shown in figure 16:
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Figure 16: The average daily electricity consumption in 1034 days for the two types of users 
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The graph above clearly reflects that the average daily electricity consumption of electricity thieves is 
still greater than that of normal users. On the one hand, normal users have a smooth fluctuating and 
cyclical pattern, and seasonal specificity is also more regular. For example, the peak period of electricity 
consumption for air conditioning in summer. As well as a small peak during the Chinese New Year 
around March each year. On the other hand, in the curve of electricity theft users, the average electricity 
consumption fluctuates greatly and is not smoothly cyclical. A point worth noting is that electricity theft 
users also seem to have a certain seasonal pattern, with a peak in the summer months of each year as 
well. This point suggests that the behaviour of electricity theft users is deceptive and somewhat 
misleading. However, there is another curious phenomenon in the graph. Around February to March 
each year (Chinese New Year), there is a clear downward trend in electricity consumption by electricity 
theft customers and it is close to the average value of electricity consumption by normal customers. 
There are a number of reasons for this phenomenon, for example, during the Chinese New Year period 
the electricity thieves may not be stealing or for some reason the thieves need to reduce their electricity 
consumption during this period, etc.  
 
After the annual and quarterly analysis has been completed, further data can be outlined for both types 
of users on a monthly and weekly basis. The sample data for the year 2015 can be selected, as shown in 
figure 17 and 18: 
 

 

 
 

Figure 17: Average monthly electricity consumption of Theft users in 2015 
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Figure 18: Average monthly electricity consumption of Normal users in 2015 
 

By comparing the two types of customers it is clear that normal customers' electricity consumption 
data tends to be stable and less volatile in months other than summer, with July, August and September 
being significantly stronger than other months in terms of consumption and fluctuations. The data for 
electricity thieves, however, appears unusually chaotic and there is a very sharp decline in December, 
with the overall trend not conforming to natural patterns. The extraction of monthly features is also an 
aspect that needs to be considered. 
 
In addition to this, according to Zheng et al. (2017) [12], data from four weeks can be extracted for 
further analysis, for example, plotting again the comparison of data between the two types of users, as 
well as plotting Pearson's correlation coefficient (PCC) and Autocorrelation function (ACF). These 
methods show correlations and potential regularities between the data in each of the two categories of 
users. The two categories of users can first be plotted again on a weekly basis, as shown in figure 19 
and 20: 
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Figure 19: average daily electricity consumption every four weeks (Theft users) 
 
 
 

 
 
Figure 20: average daily electricity consumption every four weeks (Normal users) 
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From the graph above it can be clearly seen the regularity of weekly electricity consumption for 
normal customers. Mondays and Tuesdays are the peaks of electricity use, with Wednesdays falling 
into the weekly lows of electricity use and then continuing to fluctuate steadily. The electricity thieves, 
on the other hand, continue to show chaotic electricity consumption behaviour. In fact, while 
comparing the averages, it also can be carried out similar analyses for the other users in the sample. In 
general, normal users show good cyclical and seasonal patterns, but electricity theft users continue to 
have chaotic electricity usage characteristics mixed in. Thus, annual, quarterly, monthly as well as 
weekly and daily electricity usage characteristics can be used as a benchmark for extracting features. 
 
Next, to explore the correlation between the data, the Pearson's correlation coefficient (PCC) for the 
two types of customers over the four weeks of data can be plotted, as shown in figure 21 and 22: 

 

 
Figure 21: Pearson’s correlation coefficient (PCC) (Theft User) 
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Figure 22: Pearson’s correlation coefficient (PCC) (Normal User) 

 
 

The two figures clearly show that the data correlation of normal users is much stronger than 
electricity theft user. The correlation coefficient for electricity theft customers does not exceed a 
maximum of 0.3 and has a certain negative correlation. However, the correlation coefficient for 
normal customers is generally higher than 0.8 and shows a strong positive correlation. In the PCC, 
values above 0.5 or below -0.5 represent a relatively significant correlation. Positive values closer to 
1 indicate a stronger direct correlation. A negative value and closer to -1 represents a strong indirect 
correlation [33]. The following figure 23 shows that: 
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Figure 23: Description of Pearson’s correlation coefficient (PCC) [33] 
 
 

Similarly, the daily electricity consumption of all normal customers and electricity theft customers for 
1034 days can be compared separately, as shown in the following figure 24 and 25: 

 
 

 
 

Figure 24: Pearson’s correlation coefficient (PCC) (Theft User 1034 days) 
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Figure 25: Pearson’s correlation coefficient (PCC) (Normal User 1034 days) 

 
 

By comparing on the raw data, it is also clear that the positive correlation between the daily 
electricity consumption of normal users is stronger than that of electricity thieves. Moreover, in the 
PCC diagram for normal customers, it can be seen cross-pointing with directionality. This indicates 
the potential cyclicality and regularity of the electricity consumption characteristics of normal 
customers. 
 
In addition, in the Autocorrelation function (ACF) diagram [12] it can be also seen the cyclicality of 
the average daily electricity consumption of normal users over 4 consecutive weeks, which reinforces 
the previous analysis. In contrast, electricity theft users do not show strong cyclical characteristics. 
This is shown in figure 26 and 27: 
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Figure 26: Autocorrelation function (ACF) of Theft User in 4 weeks 

 
Figure 27: Autocorrelation function (ACF) of Normal User in 4 weeks 

 
 

The data set has already been observed to have typical cyclical patterns, such as trend and seasonality. 
In simple terms, the SGCC data set is a seasonally trending time series. Here can use seasonal and 
trend decomposition using loess (STL decomposition), a time series decomposition method that uses 
robust locally weighted regression as a smoothing method and is based on LOESS (locally weighted 
regression) to decompose the time series into decomposition into trend components, seasonal 
components and residual terms [40]. In a way, the data and features determine the upper limit of 
machine learning, and the models and algorithms only approximate this upper limit [41]. In theory, an 
STL decomposition should be performed for each user. For presentation purposes, It can be continued 
to select the 1034 days of average daily electricity consumption for both types of users for STL 
decomposition. This is illustrated in figure 28 and 29:
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Figure 28: STL decomposition of average daily electricity consumption for 1034 days (Electricity-theft user) 
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Figure 29: STL decomposition of average daily electricity consumption (Normal electricity user) 
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The STL decomposition diagram further shows that the trend for normal customers is cyclical, while the 
trend for electricity theft customers is upward. The two types of customers have very different 
seasonality. As for the residual data, the seasonality and trend have been removed and are more stable 
data. For the selection of features, the trend, seasonality and residual data can still be extracted 
according to different temporal characteristics. 
 
Overall, the data set has been observed and analysed from a number of perspectives, and the distinctive 
characteristics and behaviour of the two types of customers have been broadly captured. In terms of 
temporal characteristics, annual, quarterly, monthly and weekly can all produce different potential rates 
of change. In terms of statistical data, means, minima, maxima and even variances, medians and so on 
can be used to outline the framework of characteristics for the model that follows. In addition to the raw 
data base, features can be extracted from the trend, seasonal and residual stable data through STL 
decomposition. These features, once extracted and transformed, can be better utilised by the model and 
algorithm. Before proceeding further with feature engineering, another key issue needs to be considered. 
As this project deals with a supervised learning binary classification problem and the raw data set 
inherently has an imbalance between the two types of users. In order to predict better results from the 
model, this needs to be dealt with first. 
 

4.4 Imbalanced Classification Sorting 
Imbalanced classification datasets tend to mislead the performance in machine learning. In contrast, 
different data sampling techniques can better balance the class distribution and train directly on the data 
set instead of directly modifying the original data [19]. Sampling techniques can be roughly divided into 
three types: over-sampling, under-sampling and combined sampling technique. The basic pattern is 
shown in figure 30: 

 

 
 

   Figure 30: Example of basic sampling pattern [42] 
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The current imbalance status of the data set is known, with 558 electricity theft customers and 8,275 
normal customers. The electricity theft customers represent approximately 6.3% of the total customers 
and are classified as severely unbalanced. In order to continue to maintain the authenticity of the data 
set, the oversampling technique is the first thing that needs to be considered. Hasan et al. (2019) [6] 
point out in their case that ordinary oversampling techniques can allow the model to develop an 
overfitting state due to the replication of data points. They adopted the SMOTE (Synthetic Minority 
Oversampling Technique) to generate electricity theft user of synthetic data using minority instances. 
However, a method called Borderline-SMOTE [43] has shown better performance than SMOTE in 
research. In simple terms, for example, there is a possibility of overlap between the minority and 
majority classes in the raw data set or statistical observations of electricity data. SMOTE may confuse 
the two classes of data, resulting in inaccurate classification data being produced. However, 
Borderline-SMOTE will classify observations in this minority class as noise points when the data 
adjacent to the minority class are all in the majority class, and ignore them when generating the data 
[43]. It is equivalent to creating boundaries in the vicinity of some outliers, which is more conducive to 
the accuracy of the generated data. The following figure 31 shows the state of the data set after using 
Borderline-SMOTE balance: 
 

 
 

Figure 31: The state of the data set after classification balance 
 

Having obtained the 7,717 electricity theft customers produced by Borderline-SMOTE, the results can 
be compared with real electricity theft customers and normal customers. The average daily electricity 
consumption of the three categories of users for 1034 days is shown in figure 32:
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Figure 32: Comparison of electricity theft users produced by Borderline-SMOTE 
 
From the graph it can be observed that the trend of electricity theft users produced by Borderline-SMOTE matches the trend of real electricity 
theft users and is closer to the electricity consumption data of real electricity theft users. And it does not show any significant overlap with 
normal electricity users.
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4.5 Data Transformation 
 

Normalization rescales the data from the original range so that all values are within the new range 
of 0 and 1 [17]. The study cases [12] [14] [15] [16] [18] used the 'MAX-MIN scaling method' to 
normalize the data set. This can be done to make the data fit the neural network better, since there 
is some numerical variation in the electricity consumption data. This also helps to optimize the 
core algorithm of the neural network and prevent overfitting. The formula is as follows:  
 

!(#!) = "!#$%&	(")
$*+(")#$%&(") 		[12]  

 
In addition, this project adds a novel data transformation method, batch-normalization, to the 
ConvLSTM model, which can make training deep neural networks more efficient. As stated by 
Ioffe & Szegedy (2015) ‘it can accelerate deep network training by reducing internal covariate 
shift’ [45]. In simple terms, batch-normalization can be added after each layer before the model 
output layer to optimize the efficiency of model operations. 
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5. Model Building 
The processed data is now ready to be applied to the algorithms and models. Three models are built 
in this project, MLP (baseline), CNN-LSTM and ConvLSTM. Data modeling is a long and iterative 
process that first requires a uniform partitioning of the processed data into training, validation and 
test data sets. The training and validation data can be considered as exercises, while the test data is a 
way to truly validate the model. 
 
The proportions of the three data sets in this project are, respectively, 64%, 16% and 20%. The data 
is then matched to the model for prediction through model definition and compilation. The three 
models belong to supervised models dealing with dichotomous problems, both by training the models 
and evaluating the performance of the models in identifying normal electricity users and electricity 
theft users. Since the data set was too large, in order to shorten the project time, ‘earlystopping’ [47] 
was applied to three models so that the modeling efficiency could be improved, and the network 
could be better generalized. It is also convenient to select the best model for prediction. The patience 
of all models is uniformly 50 and the monitor is val_loss. The modeling process can be divided into 
the following steps of figure 33:  

 

 
 

Figure 33: The modeling process 
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5.1 MLP 
 

Although the MLP is the baseline model, dropout [48] is still used in order to ensure the optimal 
state of each model. It is used to perform adaptive regularization to prevent overfitting of the 
model. Since no time series are implicated in this model, the unit used for feature fitting is days. 
The model architecture and parameters are as following figure 34:  

 

 
 

Figure 34: MLP model architecture and hyperparameter tuning 
 

In terms of hyperparameters, the output layer activation function is sigmoid [49] and softmax is 
not chosen. Since the results of both are not very different in this model and sigmoid is more 
stable for scaled data in this project. Sigmoid is suitable for the binary classification prediction 
output of this project (0 for normal user label and 1 for electricity theft user label) because it exists 
between 0 and 1. While other activation functions are ReLU [49], which is currently used for 
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almost all kinds of neural networks in deep learning. It is more conducive to back propagation and 
avoid problems such as gradient explosion or vanishing. As shown in figure 35: 

 

 
 

Figure 35: Sigmoid and ReLU Function [49] 
 
 

In addition, logarithmic loss is also the first to deal with binary classification issue, namely the 
binary_crossentropy in Keras. Binary cross-entropy [50] compares each predicted probability with 
the actual category output, which can be either 0 or 1. It then calculates a score that penalizes the 
probability based on the distance from the expected value. 
 
The optimizer is Adam [51], which is an optimization algorithm and can replace the classical 
stochastic gradient descent method to iteratively update the network weights in the training data. In 
short, Adam can adjust the learning rate of each network weight adaptively. 
 
5.2 CNN-LSTM 
 

The concept of the model is to use a CNN layer to extract features from the input time series 
electricity consumption data, i.e., the model extracts features within each sub-series (time period) in 
a windowed block pattern. Since the data set contains 1034 days of electricity consumption data, the 
time step can be divided into 11*94, i.e., each subsequence contains 3 months of electricity 
consumption data sequences. the CNN layer can be encapsulated in TimeDistributed [54] and the 
extracted features are flattened for use in the LSTM model. As shown in the figure below: As 
shown in following figure 36: 
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Figure 36: CNN-LSTM model architecture and hyperparameter tuning 
 

The parameter settings of this model do not change much from the baseline model, and the maximum 
pooling layer following two consecutive CNN layers is also a more conventional model. 
 
5.3 ConvLSTM 
 

ConvLSTM can currently be applied in the basic computer vision domain [55] with good results. In 
addition, the classical ‘human activity recognition’ also uses this model architecture [56]. The 
central idea of this model in this project is to deal with the issue of binary classification of time 
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series data. In essence, ConvLSTM is different from the first two models. CNN-LSTM passes the 
features extracted from CNN to LSTM, while ConvLSTM performs the convolutional operation in 
LSTM. This also involves another key difference, the input data of ConvLSTM is in 
three-dimensional (3-D) instead of the previous 1-D or 2-D data dimensions. The following figure 
37 shows an example of the ConvLSTM structure: 

 

 
 

Figure 37: ConvLSTM cell structure [57] 
 

Therefore, the first step of the model is the need to reshape the electricity consumption data into 3D 
dimensions, i.e., samples, time steps and features. In this model, the special ConvLSTM2D [58] is 
applied with the expected input dimensions: samples, time, rows, columns, channels, which can also 
be interpreted as the time step being decomposed into rows * columns of picture data points.  
 
Here, 'time' is 11 and 'columns' is 94, in the same way as 1034 days were divided into 11*94 days in 
the last CNN-LSTM. ‘Row' is 1, because the original dimension of the electricity consumption data 
is 1D. In addition, 'channels' is also 1, because the data set does not contain other additional 
features. 
 
Furthermore, in terms of data normalization, ConvLSTM in this project uses batch-normalization 
[45], which allows data set transformations to be compiled in the modeling, eliminating the time of 
separate transformations and providing model efficiency. The complete ConvLSTM structure 
becomes clearer and more concise, as shown in the following figure 38:  
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Figure 38: ConvLSTM model architecture and hyperparameter tuning 
 

 
A point worth noting is that the output still needs to be flattened into a long vector before the 
dense layer can be interpreted. After the model is complete, the next step is to evaluate the model 
with comprehensive performance metrics. 

 
 

See Appendix B for relevant codes 
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6. Performance Metrics Analysis 

6.1 Performance Metrics Description 
 

For the model evaluation part, the project used a more comprehensive performance metric on the 
test data set (20%).  

 
Classification accuracy 

 

Accuracy is the prediction made by the model for each electricity user category in the test data 
set and compared to the user labels (0 and 1). Simply put accuracy is the percentage of correct 
examples predicted in the test set. Since the data set has been processed by balanced 
classification, the accuracy has a strong ability to prove. It is calculated as:  

 

Accuracy	 =
)*++,-.	/+,01-.1*23
4*.56	/+,01-.1*23 		[59] 

 
Loss (Binary cross-entropy/Log loss) 

 

Both loss and accuracy should be a probability value between 0 and 1. In general, loss is the 
opposite of accuracy, with smaller values representing better model performance. It calculates 
the fraction of penalty probability based on the distance from the expected value, which means 
how close or far it is from the actual value [60]. This project is binary classification, so the loss is 
binary cross-entropy. As shown in the following figure 39: 

 

 
 

Figure 39: Binary cross-entropy/Log loss formula [60] 
 

Confusion Matrix 
 

Confusion matrix is a technique applied to summarize the performance of classification 
algorithms, and it can show more intuitively the correctness and error types of the model [59]. In 
a way, it overcomes the limitation of relying solely on classification accuracy. Typical binary 
classification confusion matrix is shown in figure 40:  

 

 
 

Figure 40: Typical binary classification confusion matrix [59] 
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Assume that the value in each box is 10.  
 
TP is True Positive, which means that the model correctly classifies 10 of the positive class data. 
In this project, it can be interpreted that the model correctly classifies 10 electricity theft user. 
 
TN is True Negative, which means the model correctly classifies 10 negative classes of data. The 
same can be interpreted as the model correctly classifies 10 normal users. 
 
FP is True Negative, which means that the model incorrectly classifies 10 negative classes as 
positive. This means that the 10 normal users are incorrectly predicted as electricity theft user. 
 
FN is False Negative, which means that 10 positive data are incorrectly classified as negative by 
the model. This means that 10 electricity theft users are incorrectly predicted as normal users. 
 
In addition, the accuracy can be calculated in a clearer way through the confusion matrix with 
the following formula: 
 
 

Accuracy	 =
4; + 4/

4; + =; + 4/ + =/		[59] 
 
Precision 
 

Precision refers to the proportion of actual positive results in classified positive data, and 
represents the classification accuracy of classified positive data [13]. In this project, it is the 
classification accuracy of electricity theft users. Its value is between 0 and 1, the larger the better. 
The formula is as follows: 
 

Precision =
4/

4/ + =/		[13] 
 
Recall  
 

Recall is the proportion of classified positive results in the actual positive data, i.e., the 
classification accuracy in the actual positive data [13]. In this project, it represents the 
classification accuracy of actual electricity theft users, and its value is also between 0 and 1. The 
formula is as follows: 
 

Recall =
4/

4/ + =;		[13] 
 
F1-Score  
 

F1-score captures the trend of precision and recall, thus making the model evaluation more 
comprehensive. The formula is as follows: 

 

F1 − score	 = 2	 ×	
/+,-131*2	 × 	L,-566
/+,-131*2	 + 	L,-566 		[6] 
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Cohen’s kappa  
 

Cohen's kappa can be used as a means of judging the strength of the model's classification 
predictions. The kappa value is more of a measure comparing the observed accuracy with the 
expected accuracy [61]. It is also a value between 0 and 1, the same as the previous metric, and the 
larger the value the better the performance of the model. The following is Cohen's kappa formula 
for the binary classification confusion matrix: 
 
 

+,ℎ./’1	23443	 = 	 2 × 	 (4/ × 4; − =; × =/)
(4/ + =/) × (=/ + 4;) × (4/ + =;) × (=; + 4;)

			 [62] 

 
ROC-AUC  
 

AUC is area under the curve and ROC-AUC can be derived by calculating area under the ROC 
curve [25]. On the AUC curve, the higher the ROC-AUC score the larger area under the curve, 
which has a value between 0 and 1. In fact, the ROC curve visualizes TP and FP in a trade-off 
manner. 
 
PR-AUC 
 

Similar to ROC-AUC, PR-AUC also defines the PR curve, which is a visualization of precision 
and recall. The PR-AUC also has a score between 0 and 1, with the higher the value the larger the 
curve area. The above two approaches are more often applied to the perfect evaluation of the 
model in the form of threshold intrinsic trade-offs [25].  
 
 
6.2 Metric Comparison 
 

The application of Python in machine learning makes the model evaluation precise and clear, and 
the performance metrics of all three target models have good performance, with ConvLSTM 
performing the best. This is also due to the proper pre-processing of the dataset. 

 
 Accuracy Loss Precision Recall F1-Score Cohen’s kappa ROC-AUC PR-AUC 

MLP 0.964 0.162 0.969 0.960 0.964 0.927 0.985 0.983 

CNN-LSTM 0.977 0.131 0.979 0.976 0.978 0.955 0.991 0.992 

ConvLSTM 0.984 0.089 0.984 0.985 0.984 0.969 0.993 0.991 
 

Table 3: Metrics comparison 
 

In the AUC curves and PR curves, all three models performed very well. The curves all cover 
almost the entire AUC region, and the values are all very close to 1, which indicates the presence 
of at least one threshold that allows for excellent prediction. This is shown in figures 41 and 42: 
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Figure 41: Comparison of ROC curves of MLP, CNN-LSTM and CovnLSTM 
 
 
  



 56 

 

 
Figure 42: Comparison of PR curves of MLP, CNN-LSTM and CovnLSTM 
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For a more detailed comparison, the confusion matrix and the associated scores can also be reconfirmed with each other by means of pictures, as 
shown in following figure 43: 
 

 
 

Figure 43: Comparison of Confusion Matrix of MLP, CNN-LSTM and CovnLSTM 
 

 
In the previous PR curves, the PR-AUC of CNN-LSTM is slightly higher than that of ConvLSTM by 0.001. This can be observed in the 
confusion matrix image because CNN-LSTM is slightly more accurate than ConvLSTM in predicting the ture positive class, i.e., it is slightly 
more accurate in identifying the actual normal users. However, looking at all the predictions, the false positive and negative rate of ConvLSTM, 
and the accuracy of prediction of actual electricity theft users are stronger than CNN-LSTM. Combined with the previous comprehensive metrics 
comparison, the model robustness and prediction accuracy of ConvLSTM is stronger than CNN-LSMT and MLP. 
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6.3 Convergence Analysis 
 

To better demonstrate the above conclusions, it is necessary to further analyze the convergence process [59] of the model, which is a visual 
analysis of the model's performance in the training and validation datasets. As shown in figure 44, 45 and 46:  
 
 
 

 
 

Figure 44: History of MLP Model 
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Figure 45: History of CNN-LSTM Model 
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Figure 46: History of ConvLSTM Model 
 
 
The above comparison reveals that the generalization gap [63] of all three models is relatively stable around 0.1. Both CNN-LSTM and 
ConvLSTM can reach the optimal model state before 90 epochs, while MLP needs around 150 epochs to reach it. In addition, MLP and 
CNN-LSTM reach smooth convergence around 60 epochs and 40 epochs, respectively, while ConvLSTM reaches the model convergence state 
well around 20 epochs. It is worth noting that ConLSTM performs better than the other two models in terms of noise control throughout the 
curve fluctuation state, which is also due to the application of batch-normalization in the model.  Combined with the above analysis, 
ConvLSTM outperforms MLP and CNN-LSTM in terms of model convergence efficiency and model generalization ability, showing robustness 
of the model and prediction.
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7. Conclusion & Future Work 

7.1 Conclusion 
In this project, three electricity theft detection models were successfully built and showed good 
results in electricity theft customer identification, where the novel ConvLSTM model outperformed 
MLP (baseline) and CNN-LSTM in aggregate. Data pre-processing techniques such as IQR, KNN 
imputation and Borderline-SMOTE are well utilized in the three models built in this project. 
ConvLSTM adopts more efficient batch-normalization in data transformation and outperforms MLP 
and CNN-LSTM on the test data set in terms of accuracy, loss, precision, recall, F1-score, Cohen’s 
kappa, ROC-AUC, PR-AUC: 0.984, 0.089, 0.984, 0.985, 0.984, 0.969, 0.993, 0.991. In addition, it 
performs best in confusion matrix, ROC curve and PR curve. ConvLSTM also demonstrates 
robustness and outperforms the first two models in terms of model architecture, convergence 
efficiency and generalization ability. This can also show that ConvLSTM can improve the efficiency 
and flexibility of deploying machine learning ETDs for power utilities. It can adapt to the current 
complex and changing electricity theft environment by optimizing the complex core model structure 
and shortening the processing time of electricity consumption data on the basis of guaranteeing the 
accuracy of identifying electricity theft users.  It enables power companies to make optimized 
deployments for different electricity theft behaviors in a shorter period of time. 
 

7.2 Future Work 
The hybrid LSTM model achieved good results in this project, however, the free cloud GPU still 
consumed a lot of training time during the implementation of the project due to the huge dataset and 
computation volume. Facing the huge electricity market, how to effectively solve the massive data 
and terminal matching problem is the key point that needs further expansion. For example, a regional 
power company can adopt more advanced computing equipment or deploy larger-scale cloud servers 
to the machine learning platform. Then it would be possible to collect, calculate and analyze the 
electricity consumption data and patterns of all customers in the region in real-time and 
simultaneously. Moreover, if the ETD model can be encapsulated to make it compatible with more 
convenient terminal platforms and transmission methods for operation, for example, the model can be 
ported to 5G communication mobile platforms. This will reduce the lag in detection of nascent 
electricity theft and also improves the foresight of changes in behavior of electricity theft. 
 
Furthermore, GAN generation of electricity theft data, as well as merging STL decomposition data 
features, and even multi-feature modeling, such as adding weather and geographic location, are also 
issues that need further consideration. This can enable machine learning techniques to analyze and 
detect electricity theft in more dimensions, which is a way to combine objective factors to uncover 
potential electricity thieves.  
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Appendix A - Data set Description  

The data set comes from the link: https://github.com/henryRDlab/ElectricityTheftDetection [12]. The following is the content of this project: 
 

Figure A1：Overview of raw data (first 20 rows） 
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Figure A2：Overview of raw data (last 20 rows） 
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An observation of the above figure shows that the data set consists of 1034 columns of daily 
electricity consumption data and 1 column of categorically labelled data with 42,372 rows of 
users. In addition, the data set has a large number of missing values marked as NaN and many 
zero values. The large number of missing and zero values can directly lead to the failure of the 
subsequent visual data analysis and affect the accuracy of the model predictions. 
 
 

 
 

Figure A3: The type of the data set variable 
 
The data type matches the data set description, with the power type float64 and the category 
label int64. 
 

 
 

Figure A4: Class distribution 
 
Tag 1 corresponds to 3615 electricity theft customers and tag 0 corresponds to 38757 normal 
customers. In total, there are 42,372 tags, which match the description of the dataset. 
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Figure A5: Raw data descriptive statistics 
Anomalies in the data can be found by looking at the statistical information in the raw data: 
1. The Count of daily electricity consumption for all users varies greatly and some of the 25th Percentile is almost zero, indicating that the data 
set contains a large number of missing or zero values. 
2. The maximum values of daily electricity consumption are unusual, with some of the maximum daily consumption exceeding 10,000 kWh, 
however, the data and averages of daily electricity consumption are very much in line with the habits of residential electricity consumption.  It 
can be analysed that this data set should contain a small amount of information on industrial or commercial electricity consumption, or that the 
data collection is anomalous due to a malfunctioning energy metering device. The billing and data collection methods for industrial electricity 
consumption also differ from those for general electricity consumption, as do the patterns of behaviour and patterns of electricity consumption 
between the two [32]. However, these users will be retained in order to maintain the authenticity of the data set and to validate the compatibility 
of the model. This issue can be dealt with at a later date when the data is transformed. 
3. The standard deviation fluctuates over time.  This indicates that there are seasonal fluctuations in this electricity consumption, or that it is 
affected by outliers. 
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Appendix B - Related Project Code 
The data set format of this project are CSV and XLSX, and the preliminary preparation is 
carried out through Microsoft Excel. Project data pre-processing, image generation, model 
establishment, training and result evaluation were all programmed in Python and completed on 
the Jupyter Notebook platform. On the hardware side, CNN-LSTM and ConvLSTM modeling 
is performed on a free cloud GPU due to the large data set and the enormous computing time 
involved. The rest is performed on a personal laptop. For details, please refer to 3.2 Related 
Configuration of Project Platform. The following is a code summary of the significant steps: 
 
 
 

 
 

Figure B1: Outlier filtering 
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Figure B2: KNN Imputation 
 
 

 
 

Figure B3: PCC normal users/electricity theft users (4 weeks average/1034 days) 
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Figure B4: ACF normal users/electricity theft users (4 weeks average) 

 

 
 

Figure B5: 1034days STL Decomposing (normal users/electricity theft users) 
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Figure B6: Balanced data set classification and visualization 
 

 

 
 

Figure B7: Data transformation(MinMAX) 
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Figure B8: Comparison of electricity theft user data generated by Borderline-SMOTE 
 
 
 
CNN-LSTM and ConvLSTM model training times on laptops ranged from a few hours to more 
than a dozen hours at a time. The training time on the free cloud GPU is also up to about half an 
hour. Since there is a time limit on the use of the free cloud GPU, the modeling code and the 
model evaluation code are integrated into one process in order to save time during modeling, 
which speeds up the efficiency of model tuning. The programming code is detailed in the 
following pictures, in the order of MLP, CNN-LSTM and ConvLSTM:  



 77 

 



 78 

 
Figure B9: MLP 
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Figure B10: CNN-LSTM 
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Figure B11: ConvLSTM 
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Appendix C - Model Training History Log 
The following are the model training history log for MLP, CNN-LSTM and ConvLSTM: 
 

MLP 
Epoch 1/400 
43/43 [==============================] - 1s 16ms/step - loss: 0.6323 - accuracy: 0.6353 - 
val_loss: 0.5136 - val_accuracy: 0.7761 
Epoch 2/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.5292 - accuracy: 0.7698 - 
val_loss: 0.4759 - val_accuracy: 0.7983 
Epoch 3/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.4752 - accuracy: 0.7962 - 
val_loss: 0.4405 - val_accuracy: 0.8176 
Epoch 4/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.4475 - accuracy: 0.8048 - 
val_loss: 0.4144 - val_accuracy: 0.8255 
Epoch 5/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.4173 - accuracy: 0.8157 - 
val_loss: 0.3908 - val_accuracy: 0.8395 
Epoch 6/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.4028 - accuracy: 0.8336 - 
val_loss: 0.3671 - val_accuracy: 0.8557 
Epoch 7/400 
43/43 [==============================] - 1s 13ms/step - loss: 0.3709 - accuracy: 0.8481 - 
val_loss: 0.3651 - val_accuracy: 0.8429 
Epoch 8/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.3497 - accuracy: 0.8566 - 
val_loss: 0.3439 - val_accuracy: 0.8720 
Epoch 9/400 
43/43 [==============================] - 1s 13ms/step - loss: 0.3525 - accuracy: 0.8584 - 
val_loss: 0.3307 - val_accuracy: 0.8727 
Epoch 10/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.3228 - accuracy: 0.8767 - 
val_loss: 0.3107 - val_accuracy: 0.8875 
Epoch 11/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.3069 - accuracy: 0.8840 - 
val_loss: 0.3034 - val_accuracy: 0.8810 
Epoch 12/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.2991 - accuracy: 0.8841 - 
val_loss: 0.2897 - val_accuracy: 0.8905 
Epoch 13/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.3016 - accuracy: 0.8783 - 
val_loss: 0.2757 - val_accuracy: 0.9003 
Epoch 14/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.2842 - accuracy: 0.8886 - 
val_loss: 0.3157 - val_accuracy: 0.8682 
Epoch 15/400 
43/43 [==============================] - 0s 12ms/step - loss: 0.2789 - accuracy: 0.8829 - 
val_loss: 0.2581 - val_accuracy: 0.9094 
Epoch 16/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.2682 - accuracy: 0.8947 - 
val_loss: 0.2509 - val_accuracy: 0.9079 
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Epoch 17/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.2492 - accuracy: 0.9056 - 
val_loss: 0.2895 - val_accuracy: 0.8905 
Epoch 18/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.2487 - accuracy: 0.9034 - 
val_loss: 0.2352 - val_accuracy: 0.9162 
Epoch 19/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.2333 - accuracy: 0.9094 - 
val_loss: 0.2287 - val_accuracy: 0.9154 
Epoch 20/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.2248 - accuracy: 0.9140 - 
val_loss: 0.2260 - val_accuracy: 0.9188 
Epoch 21/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.2144 - accuracy: 0.9223 - 
val_loss: 0.2584 - val_accuracy: 0.9079 
Epoch 22/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.2122 - accuracy: 0.9209 - 
val_loss: 0.2311 - val_accuracy: 0.9199 
Epoch 23/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.2128 - accuracy: 0.9191 - 
val_loss: 0.2096 - val_accuracy: 0.9316 
Epoch 24/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.2069 - accuracy: 0.9228 - 
val_loss: 0.2050 - val_accuracy: 0.9328 
Epoch 25/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.1806 - accuracy: 0.9371 - 
val_loss: 0.2069 - val_accuracy: 0.9290 
Epoch 26/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.1841 - accuracy: 0.9350 - 
val_loss: 0.1918 - val_accuracy: 0.9388 
Epoch 27/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.1779 - accuracy: 0.9338 - 
val_loss: 0.2458 - val_accuracy: 0.8965 
Epoch 28/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.1939 - accuracy: 0.9249 - 
val_loss: 0.2164 - val_accuracy: 0.9301 
Epoch 29/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.2119 - accuracy: 0.9248 - 
val_loss: 0.2039 - val_accuracy: 0.9222 
Epoch 30/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.1829 - accuracy: 0.9352 - 
val_loss: 0.1962 - val_accuracy: 0.9316 
Epoch 31/400 
43/43 [==============================] - 1s 14ms/step - loss: 0.1758 - accuracy: 0.9337 - 
val_loss: 0.1859 - val_accuracy: 0.9407 
Epoch 32/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.1578 - accuracy: 0.9464 - 
val_loss: 0.1809 - val_accuracy: 0.9377 
Epoch 33/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.1668 - accuracy: 0.9387 - 
val_loss: 0.1807 - val_accuracy: 0.9377 
Epoch 34/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.1559 - accuracy: 0.9456 - 
val_loss: 0.2112 - val_accuracy: 0.9181 
Epoch 35/400 
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43/43 [==============================] - 1s 12ms/step - loss: 0.1704 - accuracy: 0.9360 - 
val_loss: 0.1764 - val_accuracy: 0.9441 
Epoch 36/400 
43/43 [==============================] - 1s 13ms/step - loss: 0.1528 - accuracy: 0.9477 - 
val_loss: 0.1716 - val_accuracy: 0.9449 
Epoch 37/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.1480 - accuracy: 0.9518 - 
val_loss: 0.1720 - val_accuracy: 0.9403 
Epoch 38/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.1503 - accuracy: 0.9471 - 
val_loss: 0.1968 - val_accuracy: 0.9332 
Epoch 39/400 
43/43 [==============================] - 1s 12ms/step - loss: 0.1430 - accuracy: 0.9486 - 
val_loss: 0.1975 - val_accuracy: 0.9335 
Epoch 40/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.1323 - accuracy: 0.9533 - 
val_loss: 0.1776 - val_accuracy: 0.9377 
Epoch 41/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.1310 - accuracy: 0.9577 - 
val_loss: 0.1766 - val_accuracy: 0.9452 
Epoch 42/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.1403 - accuracy: 0.9521 - 
val_loss: 0.1654 - val_accuracy: 0.9460 
Epoch 43/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.1334 - accuracy: 0.9514 - 
val_loss: 0.1935 - val_accuracy: 0.9403 
Epoch 44/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.1243 - accuracy: 0.9584 - 
val_loss: 0.1561 - val_accuracy: 0.9524 
Epoch 45/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.1280 - accuracy: 0.9563 - 
val_loss: 0.1605 - val_accuracy: 0.9483 
Epoch 46/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.1254 - accuracy: 0.9614 - 
val_loss: 0.1607 - val_accuracy: 0.9494 
Epoch 47/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.1175 - accuracy: 0.9561 - 
val_loss: 0.1543 - val_accuracy: 0.9509 
Epoch 48/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.1096 - accuracy: 0.9644 - 
val_loss: 0.1563 - val_accuracy: 0.9513 
Epoch 49/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.1086 - accuracy: 0.9636 - 
val_loss: 0.1448 - val_accuracy: 0.9528 
Epoch 50/400 
43/43 [==============================] - 0s 12ms/step - loss: 0.0941 - accuracy: 0.9689 - 
val_loss: 0.1471 - val_accuracy: 0.9562 
Epoch 51/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.1177 - accuracy: 0.9581 - 
val_loss: 0.1545 - val_accuracy: 0.9490 
Epoch 52/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.1065 - accuracy: 0.9626 - 
val_loss: 0.1575 - val_accuracy: 0.9505 
Epoch 53/400 
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43/43 [==============================] - 0s 11ms/step - loss: 0.1053 - accuracy: 0.9640 - 
val_loss: 0.1478 - val_accuracy: 0.9562 
Epoch 54/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.1067 - accuracy: 0.9601 - 
val_loss: 0.1515 - val_accuracy: 0.9551 
Epoch 55/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.1038 - accuracy: 0.9618 - 
val_loss: 0.1474 - val_accuracy: 0.9509 
Epoch 56/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.1060 - accuracy: 0.9640 - 
val_loss: 0.1583 - val_accuracy: 0.9517 
Epoch 57/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.1167 - accuracy: 0.9573 - 
val_loss: 0.1435 - val_accuracy: 0.9566 
Epoch 58/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0979 - accuracy: 0.9671 - 
val_loss: 0.1351 - val_accuracy: 0.9577 
Epoch 59/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0955 - accuracy: 0.9682 - 
val_loss: 0.1540 - val_accuracy: 0.9543 
Epoch 60/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0942 - accuracy: 0.9682 - 
val_loss: 0.1503 - val_accuracy: 0.9558 
Epoch 61/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0831 - accuracy: 0.9718 - 
val_loss: 0.1371 - val_accuracy: 0.9577 
Epoch 62/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.1028 - accuracy: 0.9649 - 
val_loss: 0.1425 - val_accuracy: 0.9558 
Epoch 63/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0962 - accuracy: 0.9658 - 
val_loss: 0.1766 - val_accuracy: 0.9381 
Epoch 64/400 
43/43 [==============================] - 1s 13ms/step - loss: 0.1159 - accuracy: 0.9562 - 
val_loss: 0.1716 - val_accuracy: 0.9468 
Epoch 65/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.1005 - accuracy: 0.9645 - 
val_loss: 0.2008 - val_accuracy: 0.9377 
Epoch 66/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0934 - accuracy: 0.9654 - 
val_loss: 0.1392 - val_accuracy: 0.9607 
Epoch 67/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0862 - accuracy: 0.9694 - 
val_loss: 0.1556 - val_accuracy: 0.9535 
Epoch 68/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0937 - accuracy: 0.9665 - 
val_loss: 0.1387 - val_accuracy: 0.9607 
Epoch 69/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0908 - accuracy: 0.9693 - 
val_loss: 0.1506 - val_accuracy: 0.9585 
Epoch 70/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0861 - accuracy: 0.9735 - 
val_loss: 0.1389 - val_accuracy: 0.9641 
Epoch 71/400 
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43/43 [==============================] - 0s 11ms/step - loss: 0.0954 - accuracy: 0.9682 - 
val_loss: 0.1387 - val_accuracy: 0.9596 
Epoch 72/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0992 - accuracy: 0.9664 - 
val_loss: 0.1368 - val_accuracy: 0.9626 
Epoch 73/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0976 - accuracy: 0.9654 - 
val_loss: 0.1451 - val_accuracy: 0.9611 
Epoch 74/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0931 - accuracy: 0.9682 - 
val_loss: 0.1442 - val_accuracy: 0.9607 
Epoch 75/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0868 - accuracy: 0.9697 - 
val_loss: 0.1409 - val_accuracy: 0.9600 
Epoch 76/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0904 - accuracy: 0.9676 - 
val_loss: 0.1415 - val_accuracy: 0.9566 
Epoch 77/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0926 - accuracy: 0.9673 - 
val_loss: 0.1412 - val_accuracy: 0.9588 
Epoch 78/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0822 - accuracy: 0.9728 - 
val_loss: 0.1478 - val_accuracy: 0.9562 
Epoch 79/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0832 - accuracy: 0.9686 - 
val_loss: 0.1355 - val_accuracy: 0.9622 
Epoch 80/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0934 - accuracy: 0.9683 - 
val_loss: 0.1339 - val_accuracy: 0.9619 
Epoch 81/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.1028 - accuracy: 0.9651 - 
val_loss: 0.1348 - val_accuracy: 0.9637 
Epoch 82/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0904 - accuracy: 0.9710 - 
val_loss: 0.1570 - val_accuracy: 0.9517 
Epoch 83/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0904 - accuracy: 0.9685 - 
val_loss: 0.1513 - val_accuracy: 0.9592 
Epoch 84/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0863 - accuracy: 0.9711 - 
val_loss: 0.1457 - val_accuracy: 0.9607 
Epoch 85/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0962 - accuracy: 0.9656 - 
val_loss: 0.1723 - val_accuracy: 0.9513 
Epoch 86/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0867 - accuracy: 0.9703 - 
val_loss: 0.1345 - val_accuracy: 0.9615 
Epoch 87/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0808 - accuracy: 0.9724 - 
val_loss: 0.1469 - val_accuracy: 0.9603 
Epoch 88/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0965 - accuracy: 0.9640 - 
val_loss: 0.1332 - val_accuracy: 0.9641 
Epoch 89/400 
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43/43 [==============================] - 0s 11ms/step - loss: 0.0807 - accuracy: 0.9725 - 
val_loss: 0.1250 - val_accuracy: 0.9649 
Epoch 90/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0741 - accuracy: 0.9751 - 
val_loss: 0.1264 - val_accuracy: 0.9626 
Epoch 91/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0732 - accuracy: 0.9738 - 
val_loss: 0.1379 - val_accuracy: 0.9626 
Epoch 92/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0948 - accuracy: 0.9682 - 
val_loss: 0.1432 - val_accuracy: 0.9600 
Epoch 93/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0903 - accuracy: 0.9680 - 
val_loss: 0.1473 - val_accuracy: 0.9603 
Epoch 94/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0903 - accuracy: 0.9659 - 
val_loss: 0.1584 - val_accuracy: 0.9573 
Epoch 95/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0773 - accuracy: 0.9721 - 
val_loss: 0.1288 - val_accuracy: 0.9637 
Epoch 96/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0838 - accuracy: 0.9686 - 
val_loss: 0.1508 - val_accuracy: 0.9588 
Epoch 97/400 
43/43 [==============================] - 1s 13ms/step - loss: 0.0784 - accuracy: 0.9722 - 
val_loss: 0.1392 - val_accuracy: 0.9581 
Epoch 98/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0728 - accuracy: 0.9749 - 
val_loss: 0.1837 - val_accuracy: 0.9502 
Epoch 99/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0805 - accuracy: 0.9721 - 
val_loss: 0.1337 - val_accuracy: 0.9607 
Epoch 100/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0765 - accuracy: 0.9736 - 
val_loss: 0.1434 - val_accuracy: 0.9592 
Epoch 101/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0726 - accuracy: 0.9734 - 
val_loss: 0.1524 - val_accuracy: 0.9615 
Epoch 102/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0675 - accuracy: 0.9794 - 
val_loss: 0.1652 - val_accuracy: 0.9543 
Epoch 103/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0714 - accuracy: 0.9758 - 
val_loss: 0.1428 - val_accuracy: 0.9637 
Epoch 104/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0702 - accuracy: 0.9744 - 
val_loss: 0.1617 - val_accuracy: 0.9596 
Epoch 105/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0701 - accuracy: 0.9741 - 
val_loss: 0.1271 - val_accuracy: 0.9634 
Epoch 106/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0852 - accuracy: 0.9667 - 
val_loss: 0.1374 - val_accuracy: 0.9637 
Epoch 107/400 
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43/43 [==============================] - 0s 11ms/step - loss: 0.0769 - accuracy: 0.9736 - 
val_loss: 0.1699 - val_accuracy: 0.9532 
Epoch 108/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0905 - accuracy: 0.9671 - 
val_loss: 0.1631 - val_accuracy: 0.9528 
Epoch 109/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0912 - accuracy: 0.9649 - 
val_loss: 0.1931 - val_accuracy: 0.9449 
Epoch 110/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.1062 - accuracy: 0.9602 - 
val_loss: 0.1391 - val_accuracy: 0.9622 
Epoch 111/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0891 - accuracy: 0.9658 - 
val_loss: 0.1752 - val_accuracy: 0.9566 
Epoch 112/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0826 - accuracy: 0.9717 - 
val_loss: 0.1388 - val_accuracy: 0.9641 
Epoch 113/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0768 - accuracy: 0.9716 - 
val_loss: 0.1595 - val_accuracy: 0.9585 
Epoch 114/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0767 - accuracy: 0.9745 - 
val_loss: 0.1711 - val_accuracy: 0.9486 
Epoch 115/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0914 - accuracy: 0.9679 - 
val_loss: 0.1337 - val_accuracy: 0.9622 
Epoch 116/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0780 - accuracy: 0.9700 - 
val_loss: 0.1387 - val_accuracy: 0.9588 
Epoch 117/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0764 - accuracy: 0.9721 - 
val_loss: 0.1209 - val_accuracy: 0.9653 
Epoch 118/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0730 - accuracy: 0.9738 - 
val_loss: 0.1439 - val_accuracy: 0.9660 
Epoch 119/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0710 - accuracy: 0.9739 - 
val_loss: 0.1586 - val_accuracy: 0.9577 
Epoch 120/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0915 - accuracy: 0.9659 - 
val_loss: 0.1515 - val_accuracy: 0.9588 
Epoch 121/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0836 - accuracy: 0.9718 - 
val_loss: 0.1575 - val_accuracy: 0.9600 
Epoch 122/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0693 - accuracy: 0.9752 - 
val_loss: 0.1534 - val_accuracy: 0.9615 
Epoch 123/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0739 - accuracy: 0.9734 - 
val_loss: 0.1399 - val_accuracy: 0.9630 
Epoch 124/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0719 - accuracy: 0.9728 - 
val_loss: 0.1605 - val_accuracy: 0.9611 
Epoch 125/400 
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43/43 [==============================] - 0s 11ms/step - loss: 0.0715 - accuracy: 0.9750 - 
val_loss: 0.1534 - val_accuracy: 0.9630 
Epoch 126/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0703 - accuracy: 0.9777 - 
val_loss: 0.1620 - val_accuracy: 0.9569 
Epoch 127/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0821 - accuracy: 0.9702 - 
val_loss: 0.1843 - val_accuracy: 0.9539 
Epoch 128/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.1115 - accuracy: 0.9594 - 
val_loss: 0.1762 - val_accuracy: 0.9517 
Epoch 129/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0851 - accuracy: 0.9723 - 
val_loss: 0.1460 - val_accuracy: 0.9607 
Epoch 130/400 
43/43 [==============================] - 1s 13ms/step - loss: 0.0744 - accuracy: 0.9743 - 
val_loss: 0.1773 - val_accuracy: 0.9509 
Epoch 131/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0738 - accuracy: 0.9736 - 
val_loss: 0.1424 - val_accuracy: 0.9615 
Epoch 132/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0847 - accuracy: 0.9697 - 
val_loss: 0.1480 - val_accuracy: 0.9653 
Epoch 133/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0897 - accuracy: 0.9662 - 
val_loss: 0.1290 - val_accuracy: 0.9641 
Epoch 134/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0671 - accuracy: 0.9777 - 
val_loss: 0.1417 - val_accuracy: 0.9611 
Epoch 135/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0655 - accuracy: 0.9785 - 
val_loss: 0.1516 - val_accuracy: 0.9573 
Epoch 136/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0803 - accuracy: 0.9705 - 
val_loss: 0.1600 - val_accuracy: 0.9566 
Epoch 137/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.1182 - accuracy: 0.9570 - 
val_loss: 0.1459 - val_accuracy: 0.9649 
Epoch 138/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0744 - accuracy: 0.9739 - 
val_loss: 0.1693 - val_accuracy: 0.9577 
Epoch 139/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0805 - accuracy: 0.9697 - 
val_loss: 0.1798 - val_accuracy: 0.9509 
Epoch 140/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0811 - accuracy: 0.9695 - 
val_loss: 0.1430 - val_accuracy: 0.9615 
Epoch 141/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0864 - accuracy: 0.9705 - 
val_loss: 0.1591 - val_accuracy: 0.9619 
Epoch 142/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0786 - accuracy: 0.9724 - 
val_loss: 0.1665 - val_accuracy: 0.9596 
Epoch 143/400 
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43/43 [==============================] - 0s 11ms/step - loss: 0.0672 - accuracy: 0.9756 - 
val_loss: 0.1657 - val_accuracy: 0.9573 
Epoch 144/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0744 - accuracy: 0.9728 - 
val_loss: 0.1555 - val_accuracy: 0.9615 
Epoch 145/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0816 - accuracy: 0.9690 - 
val_loss: 0.1403 - val_accuracy: 0.9637 
Epoch 146/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0837 - accuracy: 0.9680 - 
val_loss: 0.1301 - val_accuracy: 0.9683 
Epoch 147/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0654 - accuracy: 0.9777 - 
val_loss: 0.1522 - val_accuracy: 0.9634 
Epoch 148/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0628 - accuracy: 0.9777 - 
val_loss: 0.1415 - val_accuracy: 0.9645 
Epoch 149/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0767 - accuracy: 0.9724 - 
val_loss: 0.1752 - val_accuracy: 0.9603 
Epoch 150/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0792 - accuracy: 0.9724 - 
val_loss: 0.1531 - val_accuracy: 0.9611 
Epoch 151/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0779 - accuracy: 0.9720 - 
val_loss: 0.1255 - val_accuracy: 0.9683 
Epoch 152/400 
43/43 [==============================] - 0s 12ms/step - loss: 0.0683 - accuracy: 0.9753 - 
val_loss: 0.1574 - val_accuracy: 0.9554 
Epoch 153/400 
43/43 [==============================] - 0s 12ms/step - loss: 0.0747 - accuracy: 0.9740 - 
val_loss: 0.1456 - val_accuracy: 0.9619 
Epoch 154/400 
43/43 [==============================] - 0s 12ms/step - loss: 0.0736 - accuracy: 0.9724 - 
val_loss: 0.1358 - val_accuracy: 0.9679 
Epoch 155/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0652 - accuracy: 0.9751 - 
val_loss: 0.1756 - val_accuracy: 0.9566 
Epoch 156/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0662 - accuracy: 0.9758 - 
val_loss: 0.1357 - val_accuracy: 0.9660 
Epoch 157/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0641 - accuracy: 0.9785 - 
val_loss: 0.1455 - val_accuracy: 0.9603 
Epoch 158/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0666 - accuracy: 0.9750 - 
val_loss: 0.1252 - val_accuracy: 0.9717 
Epoch 159/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0702 - accuracy: 0.9779 - 
val_loss: 0.1487 - val_accuracy: 0.9645 
Epoch 160/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0671 - accuracy: 0.9750 - 
val_loss: 0.1491 - val_accuracy: 0.9630 
Epoch 161/400 



 92 

43/43 [==============================] - 0s 11ms/step - loss: 0.0600 - accuracy: 0.9788 - 
val_loss: 0.1792 - val_accuracy: 0.9562 
Epoch 162/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0723 - accuracy: 0.9737 - 
val_loss: 0.1414 - val_accuracy: 0.9653 
Epoch 163/400 
43/43 [==============================] - 1s 13ms/step - loss: 0.0966 - accuracy: 0.9656 - 
val_loss: 0.1573 - val_accuracy: 0.9630 
Epoch 164/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0758 - accuracy: 0.9748 - 
val_loss: 0.1340 - val_accuracy: 0.9671 
Epoch 165/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0756 - accuracy: 0.9729 - 
val_loss: 0.1249 - val_accuracy: 0.9687 
Epoch 166/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0686 - accuracy: 0.9738 - 
val_loss: 0.1469 - val_accuracy: 0.9675 
Epoch 167/400 
43/43 [==============================] - 0s 11ms/step - loss: 0.0688 - accuracy: 0.9757 - 
val_loss: 0.1408 - val_accuracy: 0.9660 
Epoch 00167: early stopping 
 
 

CNN-LSTM 
Epoch 1/400 
166/166 [==============================] - 7s 30ms/step - loss: 0.6224 - accuracy: 0.6390 
- val_loss: 0.5032 - val_accuracy: 0.7761 
Epoch 2/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.5096 - accuracy: 0.7647 
- val_loss: 0.4662 - val_accuracy: 0.7829 
Epoch 3/400 
166/166 [==============================] - 5s 27ms/step - loss: 0.4738 - accuracy: 0.7909 
- val_loss: 0.4502 - val_accuracy: 0.7991 
Epoch 4/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.4566 - accuracy: 0.8027 
- val_loss: 0.4309 - val_accuracy: 0.8180 
Epoch 5/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.4288 - accuracy: 0.8164 
- val_loss: 0.4294 - val_accuracy: 0.8017 
Epoch 6/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.4138 - accuracy: 0.8212 
- val_loss: 0.3896 - val_accuracy: 0.8361 
Epoch 7/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.3934 - accuracy: 0.8347 
- val_loss: 0.3888 - val_accuracy: 0.8406 
Epoch 8/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.3941 - accuracy: 0.8381 
- val_loss: 0.3724 - val_accuracy: 0.8471 
Epoch 9/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.3637 - accuracy: 0.8498 
- val_loss: 0.3435 - val_accuracy: 0.8640 
Epoch 10/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.3331 - accuracy: 0.8633 
- val_loss: 0.3659 - val_accuracy: 0.8459 
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Epoch 11/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.3264 - accuracy: 0.8701 
- val_loss: 0.3358 - val_accuracy: 0.8697 
Epoch 12/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.3212 - accuracy: 0.8760 
- val_loss: 0.3459 - val_accuracy: 0.8542 
Epoch 13/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.2853 - accuracy: 0.8899 
- val_loss: 0.3073 - val_accuracy: 0.8860 
Epoch 14/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.2557 - accuracy: 0.9068 
- val_loss: 0.2836 - val_accuracy: 0.8875 
Epoch 15/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.2525 - accuracy: 0.9060 
- val_loss: 0.2612 - val_accuracy: 0.9014 
Epoch 16/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.2211 - accuracy: 0.9162 
- val_loss: 0.2793 - val_accuracy: 0.9052 
Epoch 17/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.1988 - accuracy: 0.9258 
- val_loss: 0.2415 - val_accuracy: 0.9116 
Epoch 18/400 
166/166 [==============================] - 5s 29ms/step - loss: 0.1870 - accuracy: 0.9306 
- val_loss: 0.2399 - val_accuracy: 0.9169 
Epoch 19/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.1531 - accuracy: 0.9459 
- val_loss: 0.1972 - val_accuracy: 0.9354 
Epoch 20/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.1394 - accuracy: 0.9526 
- val_loss: 0.2102 - val_accuracy: 0.9324 
Epoch 21/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.1181 - accuracy: 0.9576 
- val_loss: 0.2025 - val_accuracy: 0.9320 
Epoch 22/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.1232 - accuracy: 0.9537 
- val_loss: 0.1941 - val_accuracy: 0.9449 
Epoch 23/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.1068 - accuracy: 0.9623 
- val_loss: 0.1716 - val_accuracy: 0.9547 
Epoch 24/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.1034 - accuracy: 0.9665 
- val_loss: 0.1907 - val_accuracy: 0.9468 
Epoch 25/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0919 - accuracy: 0.9692 
- val_loss: 0.1766 - val_accuracy: 0.9539 
Epoch 26/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0758 - accuracy: 0.9723 
- val_loss: 0.1799 - val_accuracy: 0.9539 
Epoch 27/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0634 - accuracy: 0.9789 
- val_loss: 0.1861 - val_accuracy: 0.9585 
Epoch 28/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0622 - accuracy: 0.9774 
- val_loss: 0.1796 - val_accuracy: 0.9513 
Epoch 29/400 
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166/166 [==============================] - 5s 28ms/step - loss: 0.0619 - accuracy: 0.9791 
- val_loss: 0.1842 - val_accuracy: 0.9569 
Epoch 30/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0514 - accuracy: 0.9826 
- val_loss: 0.1892 - val_accuracy: 0.9585 
Epoch 31/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0650 - accuracy: 0.9748 
- val_loss: 0.1676 - val_accuracy: 0.9626 
Epoch 32/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0509 - accuracy: 0.9821 
- val_loss: 0.1699 - val_accuracy: 0.9611 
Epoch 33/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0418 - accuracy: 0.9865 
- val_loss: 0.1943 - val_accuracy: 0.9634 
Epoch 34/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0602 - accuracy: 0.9800 
- val_loss: 0.1851 - val_accuracy: 0.9607 
Epoch 35/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0465 - accuracy: 0.9818 
- val_loss: 0.1686 - val_accuracy: 0.9687 
Epoch 36/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0396 - accuracy: 0.9870 
- val_loss: 0.1627 - val_accuracy: 0.9732 
Epoch 37/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0279 - accuracy: 0.9906 
- val_loss: 0.1801 - val_accuracy: 0.9637 
Epoch 38/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0271 - accuracy: 0.9915 
- val_loss: 0.2220 - val_accuracy: 0.9543 
Epoch 39/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0430 - accuracy: 0.9845 
- val_loss: 0.1678 - val_accuracy: 0.9683 
Epoch 40/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0274 - accuracy: 0.9906 
- val_loss: 0.1527 - val_accuracy: 0.9721 
Epoch 41/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0212 - accuracy: 0.9927 
- val_loss: 0.1838 - val_accuracy: 0.9687 
Epoch 42/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0242 - accuracy: 0.9921 
- val_loss: 0.1827 - val_accuracy: 0.9656 
Epoch 43/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0236 - accuracy: 0.9920 
- val_loss: 0.1605 - val_accuracy: 0.9690 
Epoch 44/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0179 - accuracy: 0.9935 
- val_loss: 0.1753 - val_accuracy: 0.9687 
Epoch 45/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0321 - accuracy: 0.9890 
- val_loss: 0.2094 - val_accuracy: 0.9637 
Epoch 46/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0225 - accuracy: 0.9915 
- val_loss: 0.1675 - val_accuracy: 0.9664 
Epoch 47/400 
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166/166 [==============================] - 5s 28ms/step - loss: 0.0274 - accuracy: 0.9904 
- val_loss: 0.1672 - val_accuracy: 0.9653 
Epoch 48/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0241 - accuracy: 0.9925 
- val_loss: 0.1639 - val_accuracy: 0.9705 
Epoch 49/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0225 - accuracy: 0.9933 
- val_loss: 0.1612 - val_accuracy: 0.9683 
Epoch 50/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0182 - accuracy: 0.9937 
- val_loss: 0.1757 - val_accuracy: 0.9690 
Epoch 51/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0113 - accuracy: 0.9968 
- val_loss: 0.1894 - val_accuracy: 0.9690 
Epoch 52/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0182 - accuracy: 0.9936 
- val_loss: 0.1906 - val_accuracy: 0.9656 
Epoch 53/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0191 - accuracy: 0.9931 
- val_loss: 0.2398 - val_accuracy: 0.9668 
Epoch 54/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0269 - accuracy: 0.9917 
- val_loss: 0.1760 - val_accuracy: 0.9751 
Epoch 55/400 
166/166 [==============================] - 5s 27ms/step - loss: 0.0102 - accuracy: 0.9963 
- val_loss: 0.1888 - val_accuracy: 0.9728 
Epoch 56/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0085 - accuracy: 0.9971 
- val_loss: 0.1966 - val_accuracy: 0.9687 
Epoch 57/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0150 - accuracy: 0.9959 
- val_loss: 0.2047 - val_accuracy: 0.9702 
Epoch 58/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0214 - accuracy: 0.9935 
- val_loss: 0.2134 - val_accuracy: 0.9653 
Epoch 59/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0162 - accuracy: 0.9940 
- val_loss: 0.1952 - val_accuracy: 0.9645 
Epoch 60/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0235 - accuracy: 0.9907 
- val_loss: 0.1991 - val_accuracy: 0.9656 
Epoch 61/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0151 - accuracy: 0.9949 
- val_loss: 0.1721 - val_accuracy: 0.9713 
Epoch 62/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0112 - accuracy: 0.9968 
- val_loss: 0.2048 - val_accuracy: 0.9694 
Epoch 63/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0165 - accuracy: 0.9951 
- val_loss: 0.2197 - val_accuracy: 0.9687 
Epoch 64/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0222 - accuracy: 0.9930 
- val_loss: 0.1587 - val_accuracy: 0.9728 
Epoch 65/400 
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166/166 [==============================] - 5s 28ms/step - loss: 0.0052 - accuracy: 0.9992 
- val_loss: 0.1775 - val_accuracy: 0.9732 
Epoch 66/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0047 - accuracy: 0.9986 
- val_loss: 0.2018 - val_accuracy: 0.9717 
Epoch 67/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0081 - accuracy: 0.9979 
- val_loss: 0.2532 - val_accuracy: 0.9581 
Epoch 68/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0150 - accuracy: 0.9954 
- val_loss: 0.2075 - val_accuracy: 0.9660 
Epoch 69/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0096 - accuracy: 0.9972 
- val_loss: 0.2006 - val_accuracy: 0.9687 
Epoch 70/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0232 - accuracy: 0.9915 
- val_loss: 0.1875 - val_accuracy: 0.9721 
Epoch 71/400 
166/166 [==============================] - 5s 27ms/step - loss: 0.0030 - accuracy: 0.9993 
- val_loss: 0.2027 - val_accuracy: 0.9705 
Epoch 72/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0158 - accuracy: 0.9943 
- val_loss: 0.1977 - val_accuracy: 0.9649 
Epoch 73/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0092 - accuracy: 0.9976 
- val_loss: 0.1763 - val_accuracy: 0.9747 
Epoch 74/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0033 - accuracy: 0.9989 
- val_loss: 0.2588 - val_accuracy: 0.9619 
Epoch 75/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0211 - accuracy: 0.9945 
- val_loss: 0.1723 - val_accuracy: 0.9717 
Epoch 76/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0093 - accuracy: 0.9971 
- val_loss: 0.1942 - val_accuracy: 0.9721 
Epoch 77/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0071 - accuracy: 0.9973 
- val_loss: 0.1773 - val_accuracy: 0.9747 
Epoch 78/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0093 - accuracy: 0.9967 
- val_loss: 0.2371 - val_accuracy: 0.9671 
Epoch 79/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0231 - accuracy: 0.9922 
- val_loss: 0.1763 - val_accuracy: 0.9747 
Epoch 80/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0048 - accuracy: 0.9984 
- val_loss: 0.1859 - val_accuracy: 0.9739 
Epoch 81/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0055 - accuracy: 0.9977 
- val_loss: 0.1853 - val_accuracy: 0.9773 
Epoch 82/400 
166/166 [==============================] - 5s 27ms/step - loss: 0.0118 - accuracy: 0.9956 
- val_loss: 0.1868 - val_accuracy: 0.9743 
Epoch 83/400 
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166/166 [==============================] - 5s 28ms/step - loss: 0.0090 - accuracy: 0.9976 
- val_loss: 0.1766 - val_accuracy: 0.9717 
Epoch 84/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0063 - accuracy: 0.9982 
- val_loss: 0.1858 - val_accuracy: 0.9747 
Epoch 85/400 
166/166 [==============================] - 5s 29ms/step - loss: 0.0011 - accuracy: 0.9999 
- val_loss: 0.1802 - val_accuracy: 0.9770 
Epoch 86/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0040 - accuracy: 0.9988 
- val_loss: 0.2088 - val_accuracy: 0.9656 
Epoch 87/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0072 - accuracy: 0.9971 
- val_loss: 0.1722 - val_accuracy: 0.9751 
Epoch 88/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0150 - accuracy: 0.9958 
- val_loss: 0.1738 - val_accuracy: 0.9762 
Epoch 89/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0044 - accuracy: 0.9985 
- val_loss: 0.1698 - val_accuracy: 0.9796 
Epoch 90/400 
166/166 [==============================] - 5s 28ms/step - loss: 0.0038 - accuracy: 0.9988 
- val_loss: 0.2613 - val_accuracy: 0.9551 
Epoch 00090: early stopping 
 
ConvLSTM 
Epoch 1/400 
43/43 [==============================] - 16s 306ms/step - loss: 0.6707 - accuracy: 0.7454 
- val_loss: 0.6799 - val_accuracy: 0.5887 
Epoch 2/400 
43/43 [==============================] - 12s 289ms/step - loss: 0.3762 - accuracy: 0.8463 
- val_loss: 0.7627 - val_accuracy: 0.7032 
Epoch 3/400 
43/43 [==============================] - 12s 289ms/step - loss: 0.2917 - accuracy: 0.8802 
- val_loss: 0.5253 - val_accuracy: 0.7122 
Epoch 4/400 
43/43 [==============================] - 12s 290ms/step - loss: 0.2110 - accuracy: 0.9236 
- val_loss: 0.5135 - val_accuracy: 0.7168 
Epoch 5/400 
43/43 [==============================] - 12s 289ms/step - loss: 0.1472 - accuracy: 0.9507 
- val_loss: 0.5011 - val_accuracy: 0.7390 
Epoch 6/400 
43/43 [==============================] - 12s 290ms/step - loss: 0.1244 - accuracy: 0.9606 
- val_loss: 0.4904 - val_accuracy: 0.7304 
Epoch 7/400 
43/43 [==============================] - 12s 290ms/step - loss: 0.0873 - accuracy: 0.9752 
- val_loss: 0.4902 - val_accuracy: 0.7353 
Epoch 8/400 
43/43 [==============================] - 13s 291ms/step - loss: 0.0637 - accuracy: 0.9829 
- val_loss: 0.4525 - val_accuracy: 0.7326 
Epoch 9/400 
43/43 [==============================] - 12s 289ms/step - loss: 0.0399 - accuracy: 0.9907 
- val_loss: 0.4388 - val_accuracy: 0.7576 
Epoch 10/400 
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43/43 [==============================] - 12s 290ms/step - loss: 0.0422 - accuracy: 0.9891 
- val_loss: 0.3440 - val_accuracy: 0.8278 
Epoch 11/400 
43/43 [==============================] - 12s 290ms/step - loss: 0.0371 - accuracy: 0.9917 
- val_loss: 0.3147 - val_accuracy: 0.8844 
Epoch 12/400 
43/43 [==============================] - 12s 289ms/step - loss: 0.0342 - accuracy: 0.9930 
- val_loss: 0.3577 - val_accuracy: 0.8093 
Epoch 13/400 
43/43 [==============================] - 12s 289ms/step - loss: 0.0166 - accuracy: 0.9975 
- val_loss: 0.2772 - val_accuracy: 0.8758 
Epoch 14/400 
43/43 [==============================] - 12s 291ms/step - loss: 0.0120 - accuracy: 0.9986 
- val_loss: 0.2584 - val_accuracy: 0.8852 
Epoch 15/400 
43/43 [==============================] - 12s 290ms/step - loss: 0.0063 - accuracy: 0.9993 
- val_loss: 0.1965 - val_accuracy: 0.9369 
Epoch 16/400 
43/43 [==============================] - 12s 289ms/step - loss: 0.0071 - accuracy: 0.9989 
- val_loss: 0.2024 - val_accuracy: 0.9267 
Epoch 17/400 
43/43 [==============================] - 12s 290ms/step - loss: 0.0244 - accuracy: 0.9940 
- val_loss: 0.1191 - val_accuracy: 0.9721 
Epoch 18/400 
43/43 [==============================] - 12s 291ms/step - loss: 0.0184 - accuracy: 0.9970 
- val_loss: 0.1406 - val_accuracy: 0.9702 
Epoch 19/400 
43/43 [==============================] - 12s 290ms/step - loss: 0.0089 - accuracy: 0.9987 
- val_loss: 0.1188 - val_accuracy: 0.9743 
Epoch 20/400 
43/43 [==============================] - 12s 289ms/step - loss: 0.0079 - accuracy: 0.9996 
- val_loss: 0.1017 - val_accuracy: 0.9811 
Epoch 21/400 
43/43 [==============================] - 12s 290ms/step - loss: 0.0040 - accuracy: 0.9996 
- val_loss: 0.1094 - val_accuracy: 0.9815 
Epoch 22/400 
43/43 [==============================] - 12s 289ms/step - loss: 0.0023 - accuracy: 0.9999 
- val_loss: 0.0954 - val_accuracy: 0.9838 
Epoch 23/400 
43/43 [==============================] - 12s 290ms/step - loss: 0.0022 - accuracy: 0.9999 
- val_loss: 0.0973 - val_accuracy: 0.9823 
Epoch 24/400 
43/43 [==============================] - 12s 290ms/step - loss: 0.0023 - accuracy: 1.0000 
- val_loss: 0.0983 - val_accuracy: 0.9826 
Epoch 25/400 
43/43 [==============================] - 12s 290ms/step - loss: 0.0017 - accuracy: 1.0000 
- val_loss: 0.0952 - val_accuracy: 0.9819 
Epoch 26/400 
43/43 [==============================] - 12s 289ms/step - loss: 0.0016 - accuracy: 1.0000 
- val_loss: 0.0938 - val_accuracy: 0.9823 
Epoch 27/400 
43/43 [==============================] - 12s 290ms/step - loss: 0.0017 - accuracy: 0.9999 
- val_loss: 0.0971 - val_accuracy: 0.9800 
Epoch 28/400 
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43/43 [==============================] - 12s 290ms/step - loss: 0.0109 - accuracy: 0.9969 
- val_loss: 0.1834 - val_accuracy: 0.9569 
Epoch 29/400 
43/43 [==============================] - 12s 291ms/step - loss: 0.0165 - accuracy: 0.9954 
- val_loss: 0.1145 - val_accuracy: 0.9732 
Epoch 30/400 
43/43 [==============================] - 12s 291ms/step - loss: 0.0086 - accuracy: 0.9982 
- val_loss: 0.1008 - val_accuracy: 0.9773 
Epoch 31/400 
43/43 [==============================] - 12s 289ms/step - loss: 0.0046 - accuracy: 0.9998 
- val_loss: 0.0950 - val_accuracy: 0.9811 
Epoch 32/400 
43/43 [==============================] - 12s 289ms/step - loss: 0.0021 - accuracy: 1.0000 
- val_loss: 0.2069 - val_accuracy: 0.9800 
Epoch 33/400 
43/43 [==============================] - 12s 289ms/step - loss: 0.0020 - accuracy: 0.9999 
- val_loss: 0.1523 - val_accuracy: 0.9815 
Epoch 34/400 
43/43 [==============================] - 12s 290ms/step - loss: 0.0014 - accuracy: 0.9999 
- val_loss: 0.1363 - val_accuracy: 0.9789 
Epoch 35/400 
43/43 [==============================] - 12s 290ms/step - loss: 7.6161e-04 - accuracy: 
1.0000 - val_loss: 0.1219 - val_accuracy: 0.9789 
Epoch 36/400 
43/43 [==============================] - 12s 290ms/step - loss: 0.0014 - accuracy: 0.9999 
- val_loss: 0.0865 - val_accuracy: 0.9807 
Epoch 37/400 
43/43 [==============================] - 12s 289ms/step - loss: 8.3377e-04 - accuracy: 
1.0000 - val_loss: 0.0850 - val_accuracy: 0.9796 
Epoch 38/400 
43/43 [==============================] - 12s 290ms/step - loss: 5.1040e-04 - accuracy: 
1.0000 - val_loss: 0.0836 - val_accuracy: 0.9796 
Epoch 39/400 
43/43 [==============================] - 12s 289ms/step - loss: 5.7735e-04 - accuracy: 
0.9999 - val_loss: 0.0805 - val_accuracy: 0.9841 
Epoch 40/400 
43/43 [==============================] - 12s 289ms/step - loss: 4.1574e-04 - accuracy: 
1.0000 - val_loss: 0.0781 - val_accuracy: 0.9853 
Epoch 41/400 
43/43 [==============================] - 12s 290ms/step - loss: 5.1508e-04 - accuracy: 
1.0000 - val_loss: 0.0822 - val_accuracy: 0.9819 
Epoch 42/400 
43/43 [==============================] - 12s 290ms/step - loss: 2.7000e-04 - accuracy: 
1.0000 - val_loss: 0.0814 - val_accuracy: 0.9841 
Epoch 43/400 
43/43 [==============================] - 12s 290ms/step - loss: 5.1441e-04 - accuracy: 
1.0000 - val_loss: 0.0843 - val_accuracy: 0.9811 
Epoch 44/400 
43/43 [==============================] - 12s 290ms/step - loss: 2.2395e-04 - accuracy: 
1.0000 - val_loss: 0.0844 - val_accuracy: 0.9830 
Epoch 45/400 
43/43 [==============================] - 12s 290ms/step - loss: 1.9423e-04 - accuracy: 
1.0000 - val_loss: 0.0881 - val_accuracy: 0.9811 
Epoch 46/400 
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43/43 [==============================] - 12s 289ms/step - loss: 2.0816e-04 - accuracy: 
1.0000 - val_loss: 0.0892 - val_accuracy: 0.9815 
Epoch 47/400 
43/43 [==============================] - 12s 289ms/step - loss: 2.1666e-04 - accuracy: 
1.0000 - val_loss: 0.0892 - val_accuracy: 0.9830 
Epoch 48/400 
43/43 [==============================] - 12s 289ms/step - loss: 1.8244e-04 - accuracy: 
1.0000 - val_loss: 0.0910 - val_accuracy: 0.9830 
Epoch 49/400 
43/43 [==============================] - 12s 290ms/step - loss: 1.5665e-04 - accuracy: 
1.0000 - val_loss: 0.0908 - val_accuracy: 0.9811 
Epoch 50/400 
43/43 [==============================] - 12s 290ms/step - loss: 1.9227e-04 - accuracy: 
1.0000 - val_loss: 0.0907 - val_accuracy: 0.9807 
Epoch 51/400 
43/43 [==============================] - 12s 289ms/step - loss: 3.1638e-04 - accuracy: 
0.9999 - val_loss: 0.0940 - val_accuracy: 0.9777 
Epoch 52/400 
43/43 [==============================] - 12s 290ms/step - loss: 2.6351e-04 - accuracy: 
1.0000 - val_loss: 0.0922 - val_accuracy: 0.9792 
Epoch 53/400 
43/43 [==============================] - 12s 289ms/step - loss: 2.2118e-04 - accuracy: 
1.0000 - val_loss: 0.0972 - val_accuracy: 0.9792 
Epoch 54/400 
43/43 [==============================] - 12s 289ms/step - loss: 1.6434e-04 - accuracy: 
1.0000 - val_loss: 0.0936 - val_accuracy: 0.9811 
Epoch 55/400 
43/43 [==============================] - 12s 289ms/step - loss: 1.3784e-04 - accuracy: 
1.0000 - val_loss: 0.0950 - val_accuracy: 0.9807 
Epoch 56/400 
43/43 [==============================] - 13s 291ms/step - loss: 1.2349e-04 - accuracy: 
1.0000 - val_loss: 0.0958 - val_accuracy: 0.9807 
Epoch 57/400 
43/43 [==============================] - 12s 289ms/step - loss: 1.2453e-04 - accuracy: 
1.0000 - val_loss: 0.0976 - val_accuracy: 0.9826 
Epoch 58/400 
43/43 [==============================] - 12s 289ms/step - loss: 4.9190e-04 - accuracy: 
1.0000 - val_loss: 0.0910 - val_accuracy: 0.9834 
Epoch 59/400 
43/43 [==============================] - 12s 290ms/step - loss: 1.4997e-04 - accuracy: 
1.0000 - val_loss: 0.0913 - val_accuracy: 0.9830 
Epoch 60/400 
43/43 [==============================] - 12s 290ms/step - loss: 1.2631e-04 - accuracy: 
1.0000 - val_loss: 0.0941 - val_accuracy: 0.9826 
Epoch 61/400 
43/43 [==============================] - 13s 294ms/step - loss: 1.1994e-04 - accuracy: 
1.0000 - val_loss: 0.0938 - val_accuracy: 0.9826 
Epoch 62/400 
43/43 [==============================] - 12s 289ms/step - loss: 9.8613e-05 - accuracy: 
1.0000 - val_loss: 0.0941 - val_accuracy: 0.9823 
Epoch 63/400 
43/43 [==============================] - 12s 289ms/step - loss: 8.9673e-05 - accuracy: 
1.0000 - val_loss: 0.0938 - val_accuracy: 0.9830 
Epoch 64/400 
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43/43 [==============================] - 12s 291ms/step - loss: 8.9802e-05 - accuracy: 
1.0000 - val_loss: 0.0949 - val_accuracy: 0.9834 
Epoch 65/400 
43/43 [==============================] - 12s 291ms/step - loss: 1.0624e-04 - accuracy: 
1.0000 - val_loss: 0.0958 - val_accuracy: 0.9830 
Epoch 66/400 
43/43 [==============================] - 12s 290ms/step - loss: 1.2228e-04 - accuracy: 
1.0000 - val_loss: 0.0953 - val_accuracy: 0.9823 
Epoch 67/400 
43/43 [==============================] - 12s 289ms/step - loss: 8.3825e-05 - accuracy: 
1.0000 - val_loss: 0.0960 - val_accuracy: 0.9819 
Epoch 68/400 
43/43 [==============================] - 12s 289ms/step - loss: 7.6459e-05 - accuracy: 
1.0000 - val_loss: 0.0952 - val_accuracy: 0.9826 
Epoch 69/400 
43/43 [==============================] - 12s 291ms/step - loss: 1.5976e-04 - accuracy: 
1.0000 - val_loss: 0.0983 - val_accuracy: 0.9819 
Epoch 70/400 
43/43 [==============================] - 12s 290ms/step - loss: 1.1244e-04 - accuracy: 
1.0000 - val_loss: 0.0963 - val_accuracy: 0.9826 
Epoch 71/400 
43/43 [==============================] - 12s 289ms/step - loss: 9.7221e-05 - accuracy: 
1.0000 - val_loss: 0.0967 - val_accuracy: 0.9830 
Epoch 72/400 
43/43 [==============================] - 12s 290ms/step - loss: 1.1543e-04 - accuracy: 
1.0000 - val_loss: 0.0976 - val_accuracy: 0.9826 
Epoch 73/400 
43/43 [==============================] - 12s 290ms/step - loss: 6.5503e-05 - accuracy: 
1.0000 - val_loss: 0.0973 - val_accuracy: 0.9841 
Epoch 74/400 
43/43 [==============================] - 12s 289ms/step - loss: 7.3900e-05 - accuracy: 
1.0000 - val_loss: 0.0973 - val_accuracy: 0.9841 
Epoch 75/400 
43/43 [==============================] - 12s 290ms/step - loss: 6.5488e-05 - accuracy: 
1.0000 - val_loss: 0.0978 - val_accuracy: 0.9841 
Epoch 76/400 
43/43 [==============================] - 12s 289ms/step - loss: 9.0457e-05 - accuracy: 
1.0000 - val_loss: 0.0975 - val_accuracy: 0.9841 
Epoch 77/400 
43/43 [==============================] - 12s 290ms/step - loss: 7.1202e-05 - accuracy: 
1.0000 - val_loss: 0.0976 - val_accuracy: 0.9841 
Epoch 78/400 
43/43 [==============================] - 12s 290ms/step - loss: 6.4039e-05 - accuracy: 
1.0000 - val_loss: 0.0985 - val_accuracy: 0.9826 
Epoch 79/400 
43/43 [==============================] - 12s 290ms/step - loss: 6.0770e-05 - accuracy: 
1.0000 - val_loss: 0.0984 - val_accuracy: 0.9823 
Epoch 80/400 
43/43 [==============================] - 12s 291ms/step - loss: 9.9124e-05 - accuracy: 
1.0000 - val_loss: 0.0978 - val_accuracy: 0.9826 
Epoch 81/400 
43/43 [==============================] - 12s 289ms/step - loss: 4.6517e-05 - accuracy: 
1.0000 - val_loss: 0.0969 - val_accuracy: 0.9834 
Epoch 82/400 
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43/43 [==============================] - 12s 289ms/step - loss: 4.9163e-05 - accuracy: 
1.0000 - val_loss: 0.0973 - val_accuracy: 0.9834 
Epoch 83/400 
43/43 [==============================] - 12s 289ms/step - loss: 5.6726e-05 - accuracy: 
1.0000 - val_loss: 0.0976 - val_accuracy: 0.9826 
Epoch 84/400 
43/43 [==============================] - 12s 290ms/step - loss: 5.7549e-05 - accuracy: 
1.0000 - val_loss: 0.0972 - val_accuracy: 0.9834 
Epoch 85/400 
43/43 [==============================] - 12s 290ms/step - loss: 5.9657e-05 - accuracy: 
1.0000 - val_loss: 0.0959 - val_accuracy: 0.9841 
Epoch 86/400 
43/43 [==============================] - 12s 289ms/step - loss: 0.0026 - accuracy: 0.9990 
- val_loss: 0.1082 - val_accuracy: 0.9785 
Epoch 87/400 
43/43 [==============================] - 12s 289ms/step - loss: 3.3738e-04 - accuracy: 
1.0000 - val_loss: 0.0984 - val_accuracy: 0.9807 
Epoch 88/400 
43/43 [==============================] - 12s 290ms/step - loss: 1.6985e-04 - accuracy: 
1.0000 - val_loss: 0.0985 - val_accuracy: 0.9811 
Epoch 89/400 
43/43 [==============================] - 13s 292ms/step - loss: 2.0327e-04 - accuracy: 
1.0000 - val_loss: 0.0963 - val_accuracy: 0.9823 
Epoch 90/400 
43/43 [==============================] - 12s 290ms/step - loss: 1.5512e-04 - accuracy: 
1.0000 - val_loss: 0.0935 - val_accuracy: 0.9834 
Epoch 00090: early stopping 


